
169

MergeTree: A Fast Hardware HLBVH Constructor for Animated
Ray Tracing

TIMO VIITANEN, MATIAS KOSKELA, PEKKA JÄÄSKELÄINEN, HEIKKI KULTALA, and JARMO TAKALA
Tampere University of Technology, Finland

Ray tracing is a computationally intensive rendering technique traditionally
used in offline high-quality rendering. Powerful hardware accelerators have
been recently developed that put real-time ray tracing even in the reach of
mobile devices. However, rendering animated scenes remains difficult, as
updating the acceleration trees for each frame is a memory-intensive pro-
cess. This article proposes MergeTree, the first hardware architecture for
Hierarchical Linear Bounding Volume Hierarchy (HLBVH) construction,
designed to minimize memory traffic. For evaluation, the hardware construc-
tor is synthesized on a 28nm process technology. Compared to a state-of-
the-art binned surface area heuristic sweep (SAH) builder, the present work
speeds up construction by a factor of 5, reduces build energy by a factor of
3.2, and memory traffic by a factor of 3. A software HLBVH builder on a
graphics processing unit (GPU) requires 3.3 times more memory traffic. To
take tree quality into account, a rendering accelerator is modeled alongside
the builder. Given the use of a toplevel build to improve tree quality, the
proposed builder reduces system energy per frame by an average 41% with
primary rays and 13% with diffuse rays. In large (>500K triangles) scenes,
the difference is more pronounced, 62% and 35%, respectively.

CCS Concepts: � Computing methodologies → Ray tracing; Graphics
processors;

Additional Key Words and Phrases: Ray tracing, ray-tracing hardware,
bounding volume hierarchy, BVH, HLBVH

ACM Reference Format:

Timo Viitanen, Matias Koskela, Pekka Jääskeläinen, Heikki Kultala, and
Jarmo Takala. 2017. MergeTree: A Fast Hardware HLBVH Constructor for
Animated Ray Tracing. ACM Trans. Graph. 36, 5, Article 169 (October
2017), 14 pages.
DOI: http://dx.doi.org/10.1145/3132702

1. INTRODUCTION

Ray tracing is a rendering technique where effects such as shadows,
reflection, and global illumination are more natural to express than
in rasterization.

Authors’ addresses: T. Viitanen, M. Koskela, P. Jääskeläinen, H. Kultala,
and J. Takala; emails: {timo.2.viitanen, matias.koskela, pekka.jaaskelainen,
heikki.kultala, jarmo.takala}@tut.fi.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
2017 Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
0730-0301/2017/10-ART169 $15.00
DOI: http://dx.doi.org/10.1145/3132702

Mainstream use of ray tracing has been restricted to offline ren-
dering, but recent years have seen a concerted effort by the academia
and the industry to enable real-time ray tracing of dynamic scenes.
One prong of this effort has been the development of dedicated
ray-tracing hardware architectures, both based on programmable
processors [47, 48, 53], fixed-function hardware pipelines [32,
41], reconfigurable pipelines [28], and building on conventional,
rasterization-based GPUs [25]. Several works focus on mobile sys-
tems, reasoning that the ray-tracing approach scales well to draw-
ing complex scenes on small displays [48], or aiming to create
mobile augmented-reality experiences with physically based light-
ing [32]. Recently, a commercial mobile GPU IP with ray-tracing
acceleration has been announced alongside a programming API
[44].

Recent ray-tracing hardware accelerators are able enable real-
time ray tracing, so far restricted to high-end desktop GPUs, on
mobile devices. However, they have so far been largely restricted
to scenes with little or no animated content. The reason is that fast
rendering algorithms require the scene to be organized in an accel-
eration data structure such as a Bounding Volume Hierarchy (BVH)
tree. When displaying a dynamic scene, the data structure needs to
be updated or rebuilt on each frame as the scene changes, posing an
additional computational challenge. Given enough animated geom-
etry, construction effort overtakes rendering, as ray tracing scales
logarithmically with the number of scene primitives, while con-
struction algorithms have O(n) [30] or O(n log n) [51] complexity.
On the desktop, tree construction has been the subject of intensive
research, and fast GPU tree builders now exist that organize large
scenes at real-time rates. The fastest builders are based on the Linear
Bounding Volume Hierarchy (LBVH) algorithm by Lauterbach et al.
[30], and the improved Hierarchical LBVH (HLBVH) by Pantaleoni
and Luebke [42], and are able to organize scenes with millions of
triangles in real time. These builders leverage the massive amount of
computing resources and memory bandwidth available on desktop
GPUs, and are, therefore, not directly applicable on mobile systems
with limited resources.

A particular restriction of mobile devices is their limited memory
bandwidth: A high-end mobile System-on-Chip (SoC) has an order
of magnitude less memory bandwidth than a high-end desktop GPU.
CMOS logic scaling has allowed increasingly complex on-chip
computation to fit in the tight power budgets of mobile SoCs, but
the energy cost of off-chip communication has scaled down at a
slower pace and is now very expensive compared to computation.
For example, reading the operands of a double-precision multiply-
add from external memory and writing back the result costs ca.
200 times more energy than the arithmetic itself [24]. Hence, the
design of mobile hardware is an exercise of minimizing memory
accesses to work around the memory bottleneck. Mobile GPUs
incorporate a slew of special architectural techniques to this end,
such as tile-based rendering, texture compression [5], and frame
buffer compression [46]. A similar body of memory-conserving
techiques is emerging for ray-tracing accelerators, including treelet
scheduling [3], streaming data models [28], and quantized trees [25].

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:2 • T. Viitanen et al.

Tree construction for ray tracing is even more memory intensive than
rendering, as the fast sorting-based build algorithms iterate over
datasets of hundreds of megabytes and perform little computation
for each element.

This article focuses on mobile hardware acceleration of the
HLBVH algorithm [42]. HLBVH is interesting as a powerful builder
in its own right and as a component in virtually all build algorithms
that aim for a fast build time [12, 18, 23]. HLBVH is also an inter-
esting target for hardware acceleration, since it does not make heavy
use of floating-point arithmetic, hence, a hardware builder could fit
in a small silicon footprint. We investigate whether the high build
performance of HLBVH on GPU can translate into energy-efficient
operation in a mobile context.

The main contributions of this article are as follows. We pro-
pose the first hardware HLBVH builder architecture, named Merge-
Tree. MergeTree incorporates novel architectural techniques to re-
duce memory bandwidth usage: a hardware-accelerated external
sort and a novel streaming algorithm for joint hierarchy emission
and AABB computation, which operates directly on the sort out-
puts. The proposed architecture is evaluated via logic synthesis and
power analysis on a 28nm Fully Depleted Silicon on Insulator (FD-
SOI) process technology and by means of a system-level model
that includes traversal and intersection hardware. In addition, two
toplevel builds are evaluated as inexpensive postprocessing steps to
improve tree quality. Early simulation results for MergeTree were
reported in a conference brief [49].

Compared to previous work that uses the more expensive binned
SAH algorithm [13], MergeTree gives large improvements in build
performance, energy efficiency, memory traffic, and silicon area at
the cost of reduced tree quality. Toplevel builds are able to recover
much of the quality at low cost. System-level modeling shows that
with large animated scenes, the energy cost of tree construction be-
comes comparable to the cost of rendering and takes up a significant
fraction of a mobile power budget. Hence, the build energy savings
from MergeTree translate into significant system energy savings
despite the slightly lower tree quality. We also observe that most of
the energy footprint in hardware-accelerated tree construction is due
to DRAM traffic. A direct translation of GPU HLBVH algorithms
to hardware, without the proposed memory traffic optimizations,
would have energy consumption and runtime similarly to those in
Reference [13].

This article is organized as follows. Section 2 discusses back-
ground on BVH construction algorithms. Section 3 reviews related
work on hardware tree builders and sorting units. Section 4 dis-
cusses the basic algorithmic approach in this work and tradeoffs,
while Section 5 describes the hardware architecture implementing
the chosen algorithm. In Section 6, the architecture is evaluated by
means of ASIC synthesis and system-level simulations, and a de-
tailed power analysis is presented. Section 7 discusses limitations of
the proposed architecture and future work, and Section 8 concludes
the article.

2. PRELIMINARIES

In a BVH, each node subdivides primitives into two disjoint sets,
whose Axis-Aligned Bounding Boxes (AABB) are stored. If a traced
ray does not intersect an AABB, then all primitives underneath can
be discarded, greatly speeding up the rendering process. A standard
way to evaluate the quality of a BVH tree is its Surface Area
Heuristic (SAH) cost, introduced by Goldsmith and Salmon [19].
The SAH cost of a data structure is the expected cost to traverse a
random non-terminating ray through the scene.

A gold-standard way to construct BVH trees is the SAH
sweep [36], a greedy top-down partitioning algorithm that at each
step evaluates all possible axis-aligned splits of the primitives, ac-
cording to their AABB centroids, into two subset. The algorithm
then selects the split with the lowest SAH and repeats recursively
for each subset. Since the basic SAH sweep has a long runtime, of-
ten the binned variation [51] is used instead, which evaluates only,
for example, 8 or 16 possible splits per axis.

Starting with Linear BVH (LBVH) by Lauterbach et al. [30], a
family of GPU construction algorithms has been proposed that are
orders of magnitude faster than SAH-based builders. In LBVH, the
scene primitives are first sorted according to the Morton codes of
their AABB centroids, and then in the process of hierarchy emission,
a BVH hierarchy is built that has a binary radix tree topology with
regards to the sorted Morton codes. Finally, the AABBs of each
node are computed in a bottom-up order.

Pantaleoni and Luebke [42] propose Hierarchical Linear BVH
(HLBVH) with improved build performance and a more compact
memory layout compared to LBVH. They further suggest improving
tree quality by rebuilding upper levels of the tree with a binned
SAH sweep, in an approach called HLBVH+SAH. We use this
terminology in the present work, though several works use HLBVH
to denote HLBVH+SAH. Garanzha et al. [17] and Karras [22] have
further optimized the GPU software implementation of HLBVH,
especially the hierarchy emission that is non-trivial to parallelize.
Most recently, Apetrei [6] combined the hierarchy emission and
AABB calculation stages into a single step for a further speedup.

More complex algorithms have been built around HLBVH that
further improve tree quality. Karras and Aila [23] divide a HLBVH
tree into treelets and rearrange nodes within each treelet in par-
allel to achieve higher tree quality, in an approach later dubbed
Treelet Restructuring BVH (TRBVH). In the Agglomerative TR-
BVH (ATRBVH) of Domingues and Pedrini [12], the exhaus-
tive search of treelet permutations in TRBVH is replaced with
an agglomerative build, yielding nearly the same tree quality at
a fraction of the build time. Garanzha et al. [18] sort primi-
tives according to their Morton codes, but instead of the HLBVH
hierarchy emission, they store primitive counts in a multi-level
grid and perform an approximate SAH sweep. Both TRBVH and
Garangzha et al. [18] also break large triangles with spatial splits
to improve tree quality. Recently, Ganestam and Doggett [16]
proposed a fast, high-quality preprocessing step for triangle
splitting.

3. RELATED WORK

In this section, we introduce related work on hardware architectures
for tree construction and sorting.

3.1 Tree Build and Update Hardware

Some hardware builders have been proposed for k-d trees, an alter-
native acceleration data structure to BVH. The RayCore architec-
ture [39] incorporates a hardware k-d tree builder unit that builds
high levels of the hierarchy with a binned SAH sweep, and switches
to a sorting-based build when the dataset is small enough to fit in
on-chip SRAM. The builder is suitable only for small models, for
example, a 64K triangle scene already takes 0.1 seconds to build.
Therefore, they also design their renderer to use two acceleration
trees: the smaller tree contains all animated geometry and is rebuilt
with the hardware unit. The FastTree unit [34] uses Morton codes
for k-d tree construction, and is the fastest k-d tree constructor hard-
ware so far, at ca. 4 times the performance of the RayCore builder.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing • 169:3

Fig. 1. The proposed hardware architecture, configured for single-pass tree building for scenes of up to 2M triangles. RF, Register File. BVH, Bounding
Volume Hierarchy. AABB, Axis Aligned Bounding Box. FSM, Finite-State Machine. FIFO, First In First Out buffer.

However, tree quality is not evaluated. They use a memory-intensive
radix sort, but this does not appear to harm performance, since k-d
trees are much more compute-intensive to construct than BVHs, so
their memory interface is not stressed.

In the literature, BVH trees are shown to be less expensive to
build and update than k-d trees. Doyle et al. [13] propose the first
hardware architecture for BVH construction, which implements the
recursive binned SAH sweep algorithm. The architecture was re-
cently prototyped on FPGA [14]. The HART rendering system [40]
updates the BVH tree with hardware-accelerated refit operation in-
stead of running a full rebuild on each frame. Since tree quality
degrades with each refit, asynchronous rebuilds are run on the CPU
to refresh the tree.

The present work is the first hardware implementation of the
HLBVH algorithm, which is the basis for most high-performance
GPU builders. In contrast to GPU implementations of HLBVH [6,
17, 22, 42], we adapt the algorithm for a streaming, hardware-
oriented implementation with minimal memory traffic. The pro-
duced trees remain identical to the original work [42]. Our
main point of comparison is the state-of-the-art builder by Doyle
et al. [13], which implements binned SAH, a more computationally
expensive algorithm. Compared to a refit accelerator [40], the pro-
posed builder is able to handle animations that affect mesh topology,
for example, fluids rendered with Marching Cubes, and can handle
animation frames with entirely new geometry.

3.2 Sorting Hardware

The multi-merge sort approach has recently been used to sort large
bodies of data with FPGAs to accelerate database operations. Koch
and Torrensen [27] implement their multi-merge logic with a tree
of comparators, and merge data from up to 102 input buffers. As a
main difficulty in comparator tree design, they identify the problem
of propagating back-pressure through the tree in a single cycle,
and solve the issue by inserting decoupling FIFOs that split the
tree into smaller sub-trees. Moreover, they pipeline the compare
operations to get a higher operating frequency on FPGA. Casper
et al. [9] further increase throughput by augmenting the top of the
tree with comparators that produce multiple sorted values per cycle.
They demonstrate merges from up to 8K input buffers per cycle, but
in this case require over 2MB of buffer memories. The proposed
accelerator implements a novel multi-merge based on a pipelined
hardware heap rather than a comparator tree, giving a compact
silicon area footprint at the cost of reduced throughput.

Fig. 2. BVH data structure.

4. ALGORITHM DESIGN

In this section we describe how we adapt Pantaleoni and Lue-
bke’s [42] HLBVH algorithm to reduce memory traffic.

4.1 Data Structure Design

There are several variations of BVHs in the literature, and the chosen
variant can have implications on build performance, so we describe
the layout used in this work in detail here. In this layout, the node
data structure stores the axis aligned bounding boxes of its two chil-
dren and pointers to them. Áfra et al. [1] describe this arrangement
as MBVH2. A leaf size field determines whether the child is an-
other node or a leaf. Leafs are contiguous sub-arrays in a leaf table,
bounded by the index and leaf size fields. Each entry in the table
is a pointer to primitive data, which is used for ray-primitive tests
and shading. The complete node data structure is 64 bytes long as
shown in Figure 2.

There are many variations on the above details in the literature.
Sometimes a node only has its own AABB and two child point-
ers, but the two-AABB structure is superior in hardware ray trac-
ing [31]. More importantly, many high-performance ray tracers, for
example. Aila and Laine [4], store primitive data in the leaf table,
foregoing the extra indirection per rendering. Often the primitives
are also preprocessed for faster intersection testing with, for exam-
ple, Shevtsov’s [45] method. Since primitives in the same leaf may
not have been contiguous in the input data, this implies rearranging
the primitives.

The present work opts to use a reference table for two main
reasons. First, we try to make our results compatible with the main
prior work by Doyle [13], which to our best understanding has this
structure. Second, by taking primitive AABBs as input, the resulting

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:4 • T. Viitanen et al.

Table I. Sorting Algorithm Comparison for LBVH Construction
Prim. BVH
read Sort write Total

Sort Morton codes
Radix-16 counting sort 32 192 100 324
Multimergesort, 1 pass 32 16 100 148

Multimergesort, 2 passes 32 32 100 164

Sort AABBs
Radix-16 counting sort 32 768 68 868
Multimergesort, 1 pass 32 64 68 164

Multimergesort, 2 passes 32 128 68 228
Note: External memory traffic in bytes.

architecture is generic to any primitive type for which an AABB
can be computed - some examples of useful primitives are the
pyramidal displacement mapped surfaces in Ref. [39] and indexed-
vertex triangle lists in Ref. [25]. A primitive-leaf table could be
produced as a post-processing step.

4.2 Sorting

Sorting accounts for much of the memory traffic in HLBVH, so we
optimized it by referring to literature on external sorting data on
slow magnetic disc drives. One optimal sorting algorithm in this
environment is the multimergesort [2]. Given N data elements that
reside in slow external memory, a fast local memory of size M ,
and a preferred read length of B, the multimergesort first performs
partial sorts for N/M blocks of size M . After this, the algorithm
runs multi-merge passes that merge M/B sorted blocks into a larger
block. Table I compares the minimum memory accesses of multi-
mergesorting in the context of tree construction to a typical radix-16
sort. Assuming one primitive per leaf, a BVH organizing N primi-
tives has N − 1 nodes. Any builder, then, has unavoidable memory
traffic from primitive input (32B per input AABB) and hierarchy
emission (64B per input AABB for nodes and 4B for the leaf table).
In addition, primitive sorting requires memory accesses.

GPU implementations often use, for example, a radix-16 parallel
prefix sort, which performs eight passes through the data, each pass
reordering the data according to four bits of the sort key. In each
pass the entire data array is read twice and written once. Assuming
the sort operates on 8B Morton code - primitive reference pairs, it
then requires 3 × 8 × 8B = 192B traffic per inpt AABB. Finally,
the joint hierarchy emission and AABB computation stage must
fetch the primitive AABBs referenced by the sort results, adding
32B to the unavoidable 68B output traffic. Out of the total traffic
of 324B, more than half is produced by the sort. Replacing the
radix sort with multimergesort and assuming a small enough scene
to sort in a single pass (2M triangles in the proposed design), the
sort traffic drops to a negligible 16B, with an additional 16B per
pass. Assuming the AABBs from primitive input may be streamed
on-chip to the block sort stage, and the results of the multi-merge
to the hierarchy emission stage, the sorted pairs are only accessed
twice, for 16B traffic. The total traffic of 148B is less than half that
of the radix sort case.

The reads and writes in Table I are otherwise consequent, ex-
cept when the hierarchy emission stage loads the primitive AABBs
referenced by each sort output, it generates inefficient 32B random
accesses. Consequently, it is interesting to directly sort the primitive
AABBs instead of references. Direct AABB sorting is clearly inef-
ficient with a radix sort due to the quadrupled sorting traffic. With
multimergesort, the extra traffic is smaller (48B), and nearly offset
by the removed hierarchy emission loads (32B). Total traffic still

Fig. 3. Operating modes of the proposed architecture.

increases by ca. 11%, but all memory accesses can now be arranged
in long consecutive bursts that are more efficient. If two or more
multi-merge passes are needed, then the advantage of AABB sorting
is less clear. It is, then, desirable to use AABBs as sorting elements
and support as wide a merge as practical, so scenes of interest fit in
a single pass. We use the AABB multi-merge approach as the basis
for the present work. It should be mentioned that, in the extreme,
the primitives themselves could be used as sort elements. It is in-
expensive to add hardware to recompute their AABBs and Morton
codes on demand, so the main cost would be increased memory
traffic and on-chip storage. This approach is efficient for generating
a leaf array with primitive data, discussed in the previous section,
but foregoes genericity of the architecture for different primitives.

5. HARDWARE ARCHITECTURE

This section describes a hardware architecture named MergeTree
that implements the designed construction algorithm. A block dia-
gram of the architecture is shown in Figure 1. The architecture can
be divided into the pre-sorting and multi-merge stages that sort an
array of input AABBs according to their Morton codes, and a hier-
archy stage that processes the sorted AABBs to emit a BVH tree.
It has two operating modes where different sub-modules are active,
as shown in Figure 3. The partial sort mode is used to generate N

M

AABB arrays small enough to fit in the on-chip AABB storage, while
the hierarchy stage is inactive. In the multi-merge mode, the arrays
are merged into a final sorted sequence and fed into the hierarchy
stage. The multi-merge mode forms the backbone of the present ar-
chitecture: It is a serial process that requires a specialized hardware
pipeline for good performance. In contrast, the partial sorts paral-
lelize well, and could be done with the multi-core CPU or mobile
GPU in a SoC. The partial sorts are only integrated into the Merge-
Tree to reuse hardware from the multi-merge mode. The following
subsections first describe the multi-merge mode resources, and then
the partial sorting scheme.

5.1 Primitive Input

The main data format used for input and internal storage is an
AABB with three lower-bound and three upper-bound coordinates,
a memory reference to primitive data, and a Morton code, for a total
of 256 bits.

5.2 Heap Unit

The main component of the proposed algorithm that requires hard-
ware acceleration is the multi-merge from many input sequences

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing • 169:5

into a single, sorted output stream. Hardware acceleration is neces-
sary, since a sequential heap implementation for a heap of capacity
n takes up to log n compare-swaps to insert an element, which is
too slow for our use. Since comparator trees, used by recent sorting
accelerators [9, 27], appear unreasonably large when scaled to wide
inputs, we use an alternate approach of implementing a pipelined
heap data structure in hardware. In software implementations the
heap is stored in a single array in memory, where the children of an
element can be found with simple arithmetic. However, in custom-
designed hardware, each level of the heap can be implemented as a
separate memory module, and heap operations would then operate
in a pipelined manner, such that a new heap operation can be started
while previous operations are still propagating toward deeper levels.
This hardware structure was proposed by Bhagwan and Lin [8] for
the implementation of large priority queues in telecommunications
processors. Ioannou and Katevenis [20] optimize the design for
clock speed by overlapping stages of computation. In this work, we
largely follow the design of the latter work, and we refer the reader
to their article [20] for details. We support the insert and replace
operations, and implement remove as a replace with a large special-
case value ∞. Replace operations have a maximum throughput
of one value per two clock cycles, since fully pipelined operation
would need an expensive set of global bypass wires between heap
levels.

Detailed comparison to comparator trees is outside the scope of
this article, but it should be noted that trees have O(n log n) com-
parators with regards to the merge width, and the present design
has O(log n). The heap is, consequently, easier to scale to the wide
merges desired in this work. Our throughput is lower than an op-
timized comparator tree, but since we have a much higher clock
frequency available on ASIC than FPGA, and are sorting larger
data elements, this is less of an issue than in the FPGA works. If
more throughput is desired, then it may be interesting to use a hybrid
scheme similar to that in Reference [9], combining a small toplevel
comparator tree with subtrees implemented as heaps.

5.3 Multi-Merge Unit

The pipelined heap is connected to the rest of the system by a
hardware finite-state machine that initializes the heap, requests re-
placement data from the memory and feeds it into the heap, and
emits output data. To limit the size of the heap, the full primitive
AABBs are stored in a SRAM scratchpad memory, and the heap
only contains Morton codes and DRAM addresses of the corre-
sponding primitives. The scratchpad memory is organized into a
set of double-buffered queues for each block being multi-merged:
When one buffer has been processed, a memory read is queued
to replace it, but processing can continue from the other side of
the double buffer. Only if the second half of the double buffer is
also consumed before replacement input arrives for the first half,
does the multi-merge unit need to stall. With double buffering, the
multi-merge unit provides a degree of memory latency hiding, as
the merge process is likely to visit multiple other buffers between
the B elements of a single buffer. This property depends on the heap
accesses being well distributed between the blocks: If, for example,
the input data are already sorted, performance may suffer.

At the outset of partial sort and multi-merge modes, the FSM
makes memory requests to fill the scratchpad and inserts the initial
elements of each buffer into the empty heap. In steady-state op-
eration, on each even cycle, the finite-state machine reads the top
element of the heap, bit manipulates its DRAM address to find the
scratchpad location of the following data element in the same block,
and begins a SRAM read at that location. On the following cycle

Fig. 4. Steady-state behavior of the multi-merge stage. morton(i): Morton
code, addr(i): scratchpad address and AABB(i) AABB of the ith sorted
element. After the heap outputs a sorted element (1), the control FSM first
fetches its successor (X) from the scratchpad and performs a heap replace
operation. Next, it fetches the original element (1) for output. The unit
alternates between the two states shown: on even cycles a scratchpad read is
initialized with an address read from the heap unit, on odd cycles data is fed
from the scratchpad to the heap, and on the next even cycle, to the output
FIFO.

the SRAM data are available and used for a replace heap operation.
On odd cycles, the AABB corresponding to the previously read
heap-top value is read from scratchpad and is written to the output
FIFO on the next even cycle, simultaneously with the next heap-top
read, in a pipelined manner. Like the heap unit, this design is also
half-pipelined, producing one sorted AABB per two cycles in the
absence of stalls.

Figure 4 demonstrates this steady-state behavior. On the example
even cycle, the scratchpad address addr(1) of a sorted element is
read from the heap, incremented, and used to initialize a scratchpad
read of the element’s successor in the same buffer. On the following
odd cycle the successor’s Morton code morton(X) is available from
the scratchpad and is used to replace the top element of the heap.
Simultaneously, a scratchpad read is initialized with the original
(unincremented) address. On the next even cycle, the sorted ele-
ment’s AABB would be read from the scratchpad and written to the
output, as is done for the previous sorted element (0) in Figure 4.

A separate register array tracks that buffers in the scratchpad are
valid: If the finite-state machine attempts to fetch invalid data, exe-
cution instead stalls until the referenced data is available. Locations
are invalidated when consumed, and validated again when replaced
from memory. When the final element from the given block or scene
is read, a remove operation is performed instead of a replace. To
avoid special-case handling for the possible small buffer at the end
of the scene, it is padded to full size with special-case AABBs with
a higher Morton code than is generated for normal scene geome-
try: These are, then, sorted to the end of the scene and ignored by
subsequent processing.

5.4 Hierarchy Emitter

To minimize external memory traffic, we stream sorted AABBs to
a hardware finite-state machine that implements a serial HLBVH
hierarchy emission algorithm. The hardware unit implements
Algorithm 1, such that a single stack operation is performed per
cycle.

Figure 5 shows a visual example of the algorithm in operation.
The algorithm reads in a sorted stream of AABBs, and computes
the highest differing bit between each pair of successive Morton

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:6 • T. Viitanen et al.

Fig. 5. Example of streaming hierarchy emission, which processes the given sequence of primitives ((a)–(f)) and their Morton codes (bottom left) to produce
inner nodes ((A)–(D)) and leaf table entries for each primitive. Primitives, Morton curve and generated hierarchy are shown in the top left. diff is the highest
differing bit in the morton codes of input and the following primitive, and determines the hierarchy level of the corresponding inner node. If current is an inner
node, then it has the diff of the last primitive it contains: For example, inner node B in Cycle 5 contains primitives a, b, and c, and has the diff of c, 3.

ALGORITHM 1: Streaming hierarchy emission algorithm

1 while True do
2 input ← nextInput ;
3 read nextInput from FIFO;
4 while input and nextInput have the same Morton codes

do
5 input ← nextInput ;
6 read nextInput from FIFO;
7 input ← combine (input, nextInput);
8 end
9 diff ← highest diff. Morton bit of input and nextInput ;

10 while ¬ stack.empty() ∧ stack.top().diff < diff do
11 BVHNode n(stack.pop().aabb, input) ;
12 input ← n.aabb ;
13 output.push(n) ;
14 end
15 if diff > highlevel threshold then
16 highlevel output.push(input) ;
17 else
18 stack.push(input, diff) ;
19 end
20 end

codes, which is interpreted as a hierarchy level for an inner node to
be generated. Based on each input’s hierarchy level, the unit either
concatenates the input into a large leaf (lines 4..8), pushes it into
a small hardware stack, or combines it with the top AABB in the
stack to generate a node. The latter process is then repeated with the
AABB of the generated node used as the input node, until a higher-
level element is found in the stack, or the stack is empty. Each node

is output when sufficient primitives have been read to determine its
child bounding boxes, resulting in a bottom-up, depth-first order.
Stack entries represent inner nodes whose right child is unknown:
They consist of a left child AABB and a hierarchy level. Optionally,
a highlevel_threshold parameter can be supported by the hardware
to emit high-level nodes for a separate toplevel build (lines 15..19),
as in the HLBVH+SAH by Pantaleoni and Luebke [42]. The unit
then generates separate trees for each highlevel grid cell, and outputs
their AABBs to a buffer for postprocessing. When the parameter
is greater than the highest Morton code bit, the unit’s reverts to
conventional HLBVH and outputs a single tree.

An example of the algorithm is shown in Figure 5. In Cycles 1 and
2 in Figure 5, stack entries for nodes on hierarchy levels 2 and 1 are
pushed to the stack: The left child of the level-2 node is the primitive
a, and child of the level-1 node, b. The next encountered hierarchy
level of 3 is higher than the stack-top at level 1, so the stack-top
node A can be completed. On Cycle 4, the next node in stack can be
completed. On Cycle 5, a stack entry containing the entire subtree
constructed so far, is pushed to the stack: It will become the root of
the tree. Cycles 6 through 9 finish the right-side subtree in the same
manner, except that primitives d and e have the same Morton code,
and so are combined to the same leaf. Finally on Cycle 10, the top
node is emitted. Cycles 8..10 also show that processing finishes with
a special-case input AABB with higher Morton code value than in
the rest of the geometry: This causes the remaining stack entries
to be popped. The generated inner node topology in this example
corresponds to the Morton code bits shown in Figure 5.

It is visible that generating n inner nodes requires 2n stack opera-
tions, while enlarging a leaf takes 1 cycle. Since a BVH organizing
m leafs has at most m − 1 nodes, the worst-case runtime of the
emitter is 2m − 2 cycles for for m inputs, when there is exactly
one primitive per leaf. The average throughput of the hierarchy
emitter is, then, the same or higher as that of the multi-merge unit,
but data are consumed at an uneven rate depending on inputs, so

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing • 169:7

a FIFO buffer is required between the two units. Hierarchy emis-
sion finishes by assuming the highest differing bit after the final
sorted primitive is ∞, which causes all remaining stack entries to
be popped. The maximum required stack depth is the same as the
number of Morton code bits, that is, possible hierarchy levels.

5.5 Partial Sort

The multi-merge stage described above is straightforward to reuse
for the scratchpad-sized partial sort, by configuring the merge heap
so each double-buffer in the AABB storage is the final one in its
block, and no further buffers are fetched. Then the only additional
hardware needed is logic to sort every buffer-sized sub-block prior to
merging. This is easy to implement concurrently with data reading,
by streaming the read data into a small number of buffer-sized pre-
sorters: our implementation consists of a hardware state machine
performing an insertion sort at a rate of one compare-and-swap per
second, plus one cycle of overhead for each inner loop of the sort.
Multiplexers are inserted to bypass the insertion sorters in the multi-
merge mode, and the hierarchy emitter in the partial sort mode.

5.6 Toplevel Build

Trees produced by HLBVH likely require post-processing for ac-
ceptable quality. The earliest idea proposed in this direction is
HLBVH+SAH [42], where top levels of the BVH hierarchy, cor-
responding to high bits of the Morton code, are rearranged with a
higher-quality algorithm. This toplevel build concept is of particular
interest in a memory-constrained system, as the datasets are small
enough to fit on-chip.

To evaluate toplevel builds, we add a configuration option to our
simulated hardware to emit an array of high-level nodes, which
can then be passed to a separate software or hardware builder. Two
toplevel builders are evaluated in this work: a binned SAH build
using the accelerator of Doyle et al. [13], and a software implemen-
tation of ATRBVH [12]. ATRBVH is itself a LBVH postprocessing
step, but the usage in this article is novel in that we apply the algo-
rithm only to the high-level nodes rather than processing the entire
tree: It is then sufficiently lightweight to give real-time performance
on a mobile CPU.

6. EVALUATION

This section describes first models used for comparison against
the state-of-the-art BVH builder [13]. We then evaluate the per-
formance, silicon area, and power characteristics of the proposed
builder architecture in isolation. Finally, the builders are modeled
as components of a larger rendering system.

6.1 Binned SAH Builder Model

The closest point of comparison for the proposed builder is the
binned SAH architecture proposed by Doyle et al. [13]. The SAH
builder is also of interest as a toplevel builder used to improve the
tree quality of HLBVH trees output by the current work. For eval-
uation, it is interesting to examine the builder in more scenes than
reported in Reference [13] and to consider its energy consumption.

First, memory traffic is modeled by instrumenting a software
binned SAH builder to record build statistics. Traffic is caused by
the BVH output and by large sweeps whose datasets are too long
to fit in local primitive buffers. The architecture instance in Ref-
erence [13] has buffer capacity for 8,192 primitive AABBs. How-
ever, during each sweep, the hardware simultaneously produces
input data for two child sweeps: In some cases, both children could

Table II. Memory Traffic Model Validation
Mem. traffic (MB)

Scene Builder [13] Estimated
Toasters 2 1

Fairy 25 25
Conference 120 125

Dragon 380 379
Traffic reported for the binned SAH builder [13] is com-
pared against traffic predicted by the model.

individually fit in the buffers but are together too large. In this case,
we assume only the smaller child to be a large sweep. As shown
in Table II , this model comes close to replicating the memory
traffic results in Reference [13]. A fixed size threshold of 4,096
slightly overestimates traffic, while a threshold of 8,192 underes-
timates it. Floating-point operations are counted based on Wald’s
algorithm [51] and then combined with memory traffic to obtain a
lower-bound memory model.

Finally, the runtime of a simplified binned SAH builder is mod-
eled to give a lower bound for toplevel build performance. The
simplified builder operates serially and has a single partitioning
unit. It alternates between partitioning and binning a sweep at a
rate of one input AABB per cycle, and SAH computation, which
takes 32 cycles at the end of each sweep. The unit simplified in this
way is substantially slower than the original, but as toplevel trees
have only ca. 500–2,000 nodes in our test scenes, toplevel build has
neglible effect on runtime.

6.2 Implementation and Power Analysis

In the graphics hardware community, hardware complexity is often
estimated by counting arithmetic units and memories in the design,
but in this case we are especially interested in the energy of the
proposed architecture, and whether it can reach a high clock fre-
quency. Therefore, we wrote a prototype RTL description of the
proposed architecture and synthesize it on a CMOS technology. All
components in Figure 1 were implemented in SystemVerilog, and
SRAM macros were used for the AABB storage.

The tree builder was synthesized on a 28nm FDSOI technology
with Synopsys Design Compiler. The parameters of the builder
were set at M = 8, 192, B = 16, resulting in a unit with a 256KB
scratchpad memory, which handles up to 2M triangles in one pass,
reads data in 512B increments and performs a 256-way merge. We
include eight partial sorters for scalability. To determine the buffer
size B, we experimented with the DRAMPower model [10] and
found that increasing consecutive access size is clearly beneficial at
least up to 512B (16 AABBs). The target frequency is set at 1GHz,
supply voltage at 1V, and operating temperature at 25◦C. Clock
gating and multi-threshold voltage optimizations are enabled.

To evaluate performance, we run RTL simulations of the builder
unit with various input scenes and memory interfaces. The exter-
nal memory is modeled with the DRAM simulator Ramulator [26].
For the memory organization, we select 64-bit, one- and 2two-
channel LPDDR3-1600 (slow, medium) that are the closest devices
to state-of-the-art mobile device memory for which we are able to
perform power analysis. In addition, we simulate a 64-bit, four-
channel LPDDR3-1333 memory (fast) that gives a bandwidth close
to Doyle [13] to facilitate a direct runtime comparison, but this in-
terface is not representative of mobile systems. We subtract from
all memory power figures a static power term computed from an
idle memory transaction trace, corresponding to, for example, re-
fresh power, to isolate the extra dynamic power added by the tree
build. Ramulator is integrated to the RTL testbench through the

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:8 • T. Viitanen et al.

Fig. 6. Cycle-level simulation traces for the sibenik scene with three mem-
ory interface options. Utilizations of the multi-merge and hierarchy emitter
components cap at 50%. Computation consists of partial sorts, a multi-merge
phase, and an optional toplevel SAH build. With the slow bus, performance
is limited by memory bandwidth. With the fast bus, memory latencies and
compute pipeline throughputs become the bottleneck, particularly in the
partial sort stage.

SystemVerilog Direct Programming Interface wrapper, such that
memory requests from the simulated builder map into Ramulator
transactions, and input data is fed into the builder when the corre-
sponding read transaction completes. RTL simulation was run on
14 test scenes, and the resulting trees were verified in a software
ray tracer.

We have also implemented a C++ architectural simulator that
gives results within ca. 5% of the RTL simulation at a 20× faster
runtime and allows easier observation of the build process. Figure 6
shows example simulation traces generated with the C++ simulator.
The different execution states are visible: First, the unit alternates
between partial sort reads that utilize the insertion sorters and writes
that utilize the merge heap. Most of the execution time is spent on
the multi-merge phase, which is clearly memory limited in the
slower memory options. In the fast memory option, the throughput
of the multi-merge hardware starts to limit performance. Finally, a
toplevel SAH build is shown, which is more compute-intensive and
uses little memory.

The build times, memory traffic and tree quality of the proposed
builder are compared to related work. As a desktop benchmark, we
compare against the high-quality ATRBVH builder by Domingues
and Pedrini [12] with default settings, and their freely available
implementation of Karras’ HLBVH algorithm [22], set to use

32-bit Morton codes. The GPU builders are run on a computer
with a GeForce GTX 1080 GPU and a Intel Core i7-3930K CPU,
counting only kernel execution times. In tree builder hardware, we
compare against the state-of-the-art binned SAH builder by Doyle
et al. [13] and the k-d tree builder FastTree [34]. We use the per-
formance figures from their article and generate memory traffic
as described in the previous subsection. Memory traffic for GPU
HLBVH was extracted with nvprof .

Tree quality is evaluated based on the SAH cost of produced
trees [19]. The SAH cost C of a BVH can be computed as:

C = Ci

nnodes∑

i=0

A(Ni)

A(R)
+ Cl

nleafs∑

i=0

A(Li)

A(R)
+ Ct

nleafs∑

i=0

PiA(Li)

A(R)
,

where A(Ni) and A(Li) are the surface areas of the given inner
nodes and leafs, A(R) the surface area of the scene AABB, Pi is
the primitive count within a given leaf, Ci is the cost of travers-
ing a node, Cl the cost of traversing a leaf, and Ct the cost of a
primitive intersection test [23]. We use the SAH cost parameters
Ci = 1.2, Cl = 0, Ct = 1 given for GPUs by Karras and Aila [23]
to be comparable with previous work. SAH costs are normalized to
a full SAH sweep [52]. Quality was not evaluated for FastTree.

Two toplevel builds are evaluated to recover quality, as discussed
in Subsection 4.6. HLBVH+SAH is modeled with a cycle-level
simulator, while for HLBVH+ATRBVH, we run a single-threaded
C++ implementation on a NVidia Jetson TK1 board with a Tegra
K1 SoC. The ATRBVH build runs two iterations over the toplevel
nodes and uses a treelet size of 8.

For power analysis, we extract switching activity information
files from the previous simulations, and perform power analysis
with Synopsys Design Compiler. The constructed trees are loaded
into a software ray tracer to verify correctness and compute tree
quality. External memory power is determined by exporting DRAM
command traces from Ramulator to DRAMPower [10]. We estimate
the power and energy consumption of a 64b DRAM component
by doubling the figures for a 32b component, as these could be
combined into a 64b component.

6.3 Results

In Table III, the resulting build performance and tree quality is
compared to related work. Even with the slow memory option, the
present design is over 2× faster than the state of the art binned
SAH unit, and with the fast memory option, 5× faster (6.3× in-
cluding the Toasters scene, but the 1ms runtime reported in that
scene is too imprecise for comparison). Compared to the state-of-
the-art k-d tree builder by Liu et al. [34] with the same 12.8GB/s
bandwidth, MergeTree is 4.7× faster. With the fast memory option,
the proposed unit is within a factor of two of the desktop GPU
HLBVH builder, which has 7.5× more memory bandwidth, and
an orders of magnitude larger chip area and power envelope. ATR-
BVH gives a higher tree quality, but is, on average, 7.4× slower than
HLBVH.

6.3.1 Area, Power, and Memory Traffic. The unit was success-
fully synthesized and meets timing constraints at 1GHz. The cell
area and power breakdown of the synthesized unit is shown in
Table IV. Table V shows an area comparison to related work. The
proposed unit has ca. 2.5× less area than a binned SAH builder [13].

The results of power analysis are shown in Table VII. The main
result is that over 90% of total power consumption in the design
comes from the DRAM interface. There are some straightforward
optimizations to reduce the on-chip power: For example, a multi-
bank scratchpad could be used in place of the current expensive

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing • 169:9

Table III. Build Performance and Quality Comparison

SAH costs are relative to a full SAH sweep. Average build time is normalized to GTX 1080 HLBVH. BW denotes system memory bandwidth. The
proposed builder (HW HLBVH) is evaluated with three DRAM configurations. Toplevel Builds (HW Binned SAH, TK1 ATRBVH) show build time in
Addition to HW HLBVH.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:10 • T. Viitanen et al.

Table IV. Area and Power Breakdown of
Synthesized Design Power results from the Lion

scene, fast memory model
Area (mm2) Power (mW)

Insertion sorters 0.24 25.8
Multi-merge unit 1.14 17.2
Hierarchy emitter 0.03 2.2
FIFOs and muxes 0.99 16.0

Total 2.41 61.2

Table V. Hardware Comparison with Quadratic Process Scaling
Area Mem.

Area Node @28nm BW
Architecture (mm2) (nm) (mm2) (GB/s)

Geforce GTX 1080 314 16 962 320
HW binned SAH [13] 31.9 65 5.9 44

HW k-d tree [34] 1.4 28 1.4 43
MergeTree 2.4 28 2.4 43

Table VI. Memory Traffic Comparison (MB)
HW GPU

Scene Proposed Binned SAH HLBVH

Toasters 1.7 1.1 (0.7x) 1.7 (1.0x)
Bunny 10.6 18 (1.6x) 27 (2.5x)
Cloth 14.2 25 (1.7x) 36 (2.5x)
Fairy 19.4 70 (3.6x) 74 (3.8x)

Crytek 32.9 116 (3.5x) 115 (3.5x)
Conference 28.9 125 (4.3x) 125 (4.3x)

Sportscar 38.6 110 (2.9x) 135 (3.5x)
Italian 43.9 145 (3.3x) 169 (3.9x)

Babylonian 60.2 219 (3.6x) 230 (3.8x)
Kitchen 77.1 436 (5.6x) 352 (4.6x)
Dragon 124.8 379 (3.0x) 413 (3.3x)
Buddha 147.9 493 (3.3x) 520 (3.5x)

Livingroom 150.4 833 (5.5x) 685 (4.6x)
Lion 230.1 800 (3.5x) 766 (3.3x)

Geom. mean - (3.0x) (3.3x)

dual-port SRAM. However, since the power consumed by the hard-
ware unit itself is negligible compared to DRAM, the improvements
from optimization would also be marginal.

Table VI compares our memory traffic to related work. The pro-
posed builder generates 3.0× less traffic than hardware binned SAH,
and 3.3× less than a GPU build—the radix sort stage of the GPU
build alone generates roughly as much traffic as our complete build.
Our builder also achieves very high bus utilizations of 72%, 54%,
and 44% of the memory bandwidth on the slow, medium and fast
interface options, respectively.

The above results show that the energy consumption and build
speed of MergeTree are largely determined by the amount of mem-
ory traffic generated. A straightforward conversion of HLBVH
to hardware, without the proposed memory traffic optimizations,
would likely have a ca. 3× higher energy consumption and run-
time, almost as high as the binned SAH builder [13].

6.3.2 Tree Quality. MergeTree builds slightly higher-quality
trees than the GPU HLBVH builder, since we generate large leafs
for primitives with identical Morton codes, as in Reference [42],
while the GPU builder organizes these primitive ranges with an

Table VII. Power Analysis Results, Average
of 14 Scenes

Max. BW (GB/s) 12.8 25.6 42.7

Mem. traffic (GB/s) 9.2 13.9 18.9

Logic power (mW) 58.1 61.8 62.7
DRAM power (mW) 507.2 814.8 1,112.4

Total power (mW) 565.3 876.6 1,175.2

arbitrary subtree and emits one leaf per triangle. Nevertheless, our
plain HLBVH trees have low quality, on average 148%, compared
to 104% for Doyle et al. [13].

The evaluated toplevel builds give significant tree qual-
ity improvements: HLBVH+SAH to an average of 118% and
HLBVH+ATRBVH to 111%, only ca. 5% worse than a binned
SAH build. The hardware binned SAH builder has an insignificant
runtime compared to the LBVH but consumes extra chip area. Our
naı́ve single-threaded software implementation of toplevel ATR-
BVH is already fast enough for real-time construction on a mobile
SoC and could run all scenes at 30FPS except for Lion, which has
demanding geometry.

6.4 System Level Comparison

From the previous results, it is apparent that MergeTree gives a
similar tradeoff as desktop GPU HLBVH: It is very fast and energy
efficient compared to prior work, at the cost of reduced tree qual-
ity, which can be mostly recovered with postprocessing toplevel
builds. We can conjecture that a binned SAH builder is advanta-
geous in small scenes where the build effort is minuscule relative
to rendering, and the proposed builder becomes advantageous in
larger scenes. The exact tradeoff depends on the particular scene
and visual effects being displayed. This subsection further quan-
tifies the system-level effects of builder selection by modeling a
larger system that includes rendering hardware. The model focuses
on system energy consumption per frame, as it is a main figure of
interest in mobile systems and simplifies modeling. We start out
from the premise that the BVH tree for the complete scene is rebuilt
for each frame, and a viewpoint is then rendered at a 1, 280 × 720
resolution. The scenes and viewpoints used are shown in Table III.
Benchmarks are run for primary ray rendering, as well as diffuse
lighting with one sample per pixel, limited to three bounces. The
latter is representative of incoherent secondary rays.

The main components of the present model are a fixed-function
rendering accelerator, combined with MergeTree, binned SAH and
ATRBVH hardware builders. Moreover, toplevel build combina-
tions of HLBVH+SAH and HLBVH+ATRBVH are tested that
combine two hardware builders. For MergeTree, we use accurate
energy figures based on post-synthesis power analysis and DRAM-
Power. For the binned SAH builder, we estimate memory traf-
fic and FPU operation counts as described in Subsection 5.1 and
then obtain a lower-bound energy model by assuming fully uti-
lized FPUs and long, consecutive burst accesses to DRAM. For the
ATRBVH builder, memory accesses and FPU operations are like-
wise counted from program code. No high-performance hardware
architecture has been published for ATRBVH, but given the input
size for toplevel builds, even a serial hardware unit performing one
FPU operation per cycle is sufficient to process all test scenes at
over 100fps. Finally, the rendering accelerator is modeled after the
traversal and intersection unit of SGRT [32] and simulated at cycle
level as described in Reference [50]. Some common assumptions
are used when modeling the hardware units. The units reside on a
mobile SoC that is fabricated with a 28nm process technology and

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing • 169:11

equipped with the 25.6GB/s memory interface described earlier. As
with MergeTree, off-chip memory accesses are modeled with Ra-
mulator and DRAMPower. Caches and SRAMs are parametrized
with CACTI 6.5 [38]. Floating-point unit energy is based on the
figures of Galal et al. [15], with linear process scaling, as in the
GPUSimPow simulator [35]. Reciprocal calculation is estimated to
take as much energy as 3 FLOPs, as in Reference [33]. All units
beside MergeTree operate at 500MHz.

6.4.1 Rendering Hardware Model. The modeled accelerator
architecture is shown in Figure 8: It consists of separate fixed-
function pipelines for tree traversal and primitive intersection.
Scenes are rendered with a software ray tracer, from which a traver-
sal trace is extracted and fed to a cycle-level hardware simulator,
which traces utilizations for all components in Figure 8. The power
consumption of each component is determined by multiplying a
dynamic power term with the utilization and adding a static power
term. For the fixed-function pipelines, the energy consumption of
floating-point adds, multiplications and reciprocals is counted. The
architecture and simulation flow is described in more detail in Ref-
erence [50] and is unchanged from that work, except the SRAM
and FPU models are updated to a 28nm process.

In addition to tree construction and traversal, shading is the third
main component in the rendering process. Shading has a very wide
range of complexity: We experimented with adding the energy cost
of minimal shading and pixel output to the model, that is, Phong
shading with a directional light, but this had minimal effect on
the total power. On the other hand, sufficiently complex shading
may dominate the rendering process [29]. Mobile ray tracing would
likely opt for inexpensive shaders at first. As shading cost is inde-
pendent of tree quality, we omit it from the model.

6.4.2 Results. The system-level energy results are shown scene
by scene in Figure 7 and summarized in Table VIII. It is visible
that the energy cost of tree construction scales asympotically faster
with scene size than traversal and, with binned SAH, dominates
the energy profile in large scenes. Though the binned SAH builder
performs significant floating-point computation, most of its energy
consumption is also due to DRAM accesses. MergeTree uses on
average ca. 3.2× less energy. In primary ray tracing, the build energy
savings are sufficient to make HLBVH preferred in all scenes except
Toasters. In large scenes, tree construction dominates the system
energy, and HLBVH gives significant savings.

With incoherent secondary rays, the energy footprint of ray trac-
ing grows significantly and is dominated by memory traffic. As
such, tree quality has a larger effect on system energy. Moreover,
the tracing energy penalty of the proposed builder is larger than
predicted by SAH cost. Toplevel builds reduce system energy but
less than predicted by SAH. Regardless, in large (>500K triangle)
scenes the cost of tree construction is significant enough that the
proposed builder consistently reduces system energy compared to
binned SAH.

For comparison with mobile power budgets and GPUs, the
energy results in Figure 7 are presented as power at a fixed
30FPS frame rate. Diffuse, animated ray tracing in our model with
HLBVH+ATRBVH dissipates between 143..2077mW of power,
and primary ray tracing between 72..791mW. For a point of com-
parison, in the benchmarks of Pathania et al. [43], recent mobile
games on an Odroid-XU+E platform dissipate ca. 2..3W, of which
ca. 0.8..1.8W is used in the mobile GPU. These results suggest
that MergeTree allows the ray tracing of large (>500K triangle)
dynamic scenes in a mobile power envelope. However, in the
most demanding scenes there is only limited margin for complex

Table VIII. System Energy with Different Builders, Main
Results. Energy normalized to binned SAH [Doyle et al. 2013],

averaged over 14 scenes
Primary rays, all scenes

Binned HLBVH HLBVH
Energy SAH HLBVH +SAH +ATRBVH

Build 100% 32% 33% 33%
Trace 100% 143% 114% 112%
Total 100% 71% 59% 58%

Primary rays, large scenes
Binned HLBVH HLBVH

Energy SAH HLBVH +SAH +ATRBVH
Build 100% 22% 22% 22%
Trace 100% 148% 122% 122%
Total 100% 41% 37% 37%

Diffuse rays, all scenes
Binned HLBVH HLBVH

Energy SAH HLBVH +SAH +ATRBVH
Build 100% 32% 33% 33%
Trace 100% 163% 134% 128%
Total 100% 110% 91% 87%

Diffuse rays, large scenes
Binned HLBVH HLBVH

Energy SAH HLBVH +SAH +ATRBVH
Build 100% 22% 22% 22%
Trace 100% 165% 141% 137%
Total 100% 79% 68% 65%

shading. A binned SAH builder would already use most of the
mobile power budget for these scenes.

7. LIMITATIONS AND FUTURE WORK

One difficulty in the proposed design is handling scenes of over
M2

2B
primitives (2 million triangles with the evaluation setup), as

they require more than one multi-merge pass. It is simple to add
control logic for multiple passes, but the use of AABBs as sorting
elements is then suboptimal. Another possibility is to enlarge the
scratchpad: Doubling the memory size M quadruples the model size
that can be processed in one pass. In our experience, at least a 512KB
scratchpad memory can run at 1GHz; this would be sufficient for
scenes of 8M triangles. It would also be interesting to evaluate, as
a replacement for double buffering, the other well-known multi-
merge sort read scheduling technique of forecasting, used by, for
example, Barve et al. [7]. Forecasting introduces a second heap
that stores the final elements of each buffer and uses it to fetch
replacement buffers in an optimal order. Forecasting would, again,
double the size of scene that can be sorted in a single pass with a
given scratchpad size.

Recent trends in ray-tracing accelerators are toward techniques
that reduce the cost of ray traversal while complicating tree con-
struction, for example, compressed BVHs [25] and treelet schedul-
ing [3]. In future architectures incorporating these features, the cost
of tree construction will be emphasized even more than in straight-
forward single-precision traversal as evaluated in this article. We
are extending MergeTree to generate compressed trees.

This article focused on mobile ray tracing, but the design also
has interesting applications in, for example, collision detection as
in Reference [11], and with minor modifications, construction of
point set k-d trees [22] and data sorting.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

169:12 • T. Viitanen et al.

Fig. 7. System energy with only primary rays (top) and diffuse secondary rays (bottom), expressed as power at 30FPS for comparison to mobile GPUs. Four
alternatives are modeled: HLBVH only, binned SAH only, and HLBVH with binned SAH and ATRBVH toplevel builds. HLBVH build energy is from RTL
simulation, while tracing and binned SAH energy are based on higher-level models. The proposed HLBVH builder reduces build energy at the cost of worse
tree quality, which increases tracing energy. Toplevel builds remove much of the quality penalty. Tracing complexity is weakly related to scene size, while
build energy grows, and becomes dominant in large scenes. Averaged results are shown in Table VIII.

Fig. 8. Ray-tracing accelerator simulated for system level energy model-
ing. The accelerator is modeled after the traversal and intersection unit in
SGRT [32], with a two-AABB node layout [31]. All shown components are
simulated at cycle level.

8. CONCLUSION

In this article, we proposed MergeTree, the first hardware accelera-
tor architecture for the HLBVH algorithm, which forms the basis for
the highest-performance GPU tree construction algorithms. Novel
techniques were proposed to adapt HLBVH into a streaming, serial
hardware form, which is suitable for mobile systems with limited
power budgets, due to reduced memory traffic. Our results show
significant improvements over previous state of the art [13] in terms
of build performance, silicon area, memory traffic and energy con-
sumption, at the cost of reduced tree quality, which can be mitigated
with inexpensive toplevel builds.

The proposed architecture substantially increases the size of an-
imated scenes that could be rendered by a mobile ray-tracing ac-
celerator in real time, and also has applications outside ray tracing.
System-level modeling showed that the cost of tree construction
begins to rival the cost of real-time rendering in large scenes. Mer-
geTree gives significant system energy savings in these scenes.

ACKNOWLEDGMENTS

This work was financially supported by the TUT graduate school
and the Academy of Finland (decision #297548, PLC). The 3D mod-
els used are courtesy of Ingo Wald (Fairy), Andrew Kensler (Toast-
ers), Yasutoshi Mori (Sportscar), Frank Meinl (Crytek Sponza),
Jonathan G. (Italian, Babylonian), Anat Grynberg and Greg Ward
(Conference), Naga Govindaraju, Ilknur Kabul and Stephane Re-
don (Cloth), the Stanford Computer Graphics Laboratory (Bunny,
Dragon), and the SceneNet library [21] (Livingroom, Kitchen). Cry-
tek Sponza and Dragon have modifications courtesy of Morgan
McGuire [37].

REFERENCES

[1] Attila T. Áfra and László Szirmay-Kalos. 2014. Stackless multi-BVH
Traversal for CPU, MIC and GPU ray tracing. Comput. Graph. Forum
33, 1 (2014), 129–140.

[2] Alok Aggarwal and Jeffrey Scott Vitter. 1988. The input/output com-
plexity of sorting and related problems. Commun. ACM 31, 9 (1988),
1116–1127.

[3] Timo Aila and Tero Karras. 2010. Architecture considerations for trac-
ing incoherent rays. In Proceedings of High Performance Graphics.
113–122.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

MergeTree: A Fast Hardware HLBVH Constructor for Animated Ray Tracing • 169:13

[4] Timo Aila and Samuli Laine. 2009. Understanding the efficiency of
ray traversal on GPUs. In Proceedings of High Performance Graphics.
145–149.

[5] Tomas Akenine-Möller and Jacob Strom. 2008. Graphics processing
units for handhelds. Proc. IEEE 96, 5 (2008), 779–789.

[6] Ciprian Apetrei. 2014. Fast and simple agglomerative LBVH construc-
tion. In Proceedings of the Computer Graphics and Visual Computing
Conference (CGVC’14).

[7] Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. 1997.
Simple randomized mergesort on parallel disks. Parallel Comput. 23,
4 (1997), 601–631.

[8] Ranjita Bhagwan and Bill Lin. 2000. Fast and scalable priority queue
architecture for high-speed network switches. In Proceedings of the
Annual Joint Conference of the IEEE Computer and Communications
Societies, Vol. 2. 538–547.

[9] Jared Casper and Kunle Olukotun. 2014. Hardware acceleration of
database operations. In Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 151–160.

[10] Karthik Chandrasekar, Christian Weis, Yonghui Li, Benny Akesson,
Norbert Wehn, and Kees Goossens. 2012. DRAMPower: Open-source
DRAM power & energy estimation tool. Retrieved February 30, 2017
from http://www.drampower.info.

[11] Erwin Coumans. 2017. Bullet physics library. Retrieved March 6,
2017 from http://www.bulletphysics.org.

[12] Leonardo R. Domingues and Helio Pedrini. 2015. Bounding volume
hierarchy optimization through agglomerative treelet restructuring. In
Proceedings of High Performance Graphics. 13–20.

[13] Michael Doyle, Colin Fowler, and Michael Manzke. 2013. A hardware
unit for fast SAH-optimized BVH construction. ACM Trans. Graph.
32, 4 (2013), 139:1–10.

[14] Michael Doyle, Ciaran Tuohy, and Michael Manzke. 2017. Evaluation
of a BVH construction accelerator architecture for high-quality visual-
ization. IEEE Trans. Multi-Scale Comput. Syst. Early access. Retrieved
from http://ieeexplore.ieee.org/abstract/document/7903616/.

[15] Sameh Galal and Mark Horowitz. 2011. Energy-efficient floating-
point unit design. IEEE Trans. on Comput. 60, 7 (2011), 913–
922.

[16] Per Ganestam and Michael Doggett. 2016. SAH guided spatial split
partitioning for fast BVH construction. Comput. Graph. Forum 35, 2
(2016), 285–293.

[17] Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. 2011a.
Simpler and faster HLBVH with work queues. In Proceedings of
High Performance Graphics. 59–64.

[18] Kirill Garanzha, Simon Premože, Alexander Bely, and Vladimir
Galaktionov. 2011b. Grid-based SAH BVH construction on a GPU.
Vis. Comput. 27, 6–8 (2011), 697–706.

[19] Jeffrey Goldsmith and John Salmon. 1987. Automatic creation of
object hierarchies for ray tracing. IEEE Comput. Graph. Appl. 7, 5
(1987), 14–20.

[20] Aggelos Ioannou and Manolis G. H. Katevenis. 2007. Pipelined
heap (priority queue) management for advanced scheduling in
high-speed networks. IEEE/ACM Trans. Netw. 15, 2 (2007), 450–
461.

[21] Ilan Kadar and Ohad Ben-Shahar. 2013. SceneNet: A perceptual on-
tology database for scene understanding. J. Vis. 13, 9 (2013), 1310–
1310.

[22] Tero Karras. 2012. Maximizing parallelism in the construction of
BVHs, octrees, and k-d trees. In Proceedings of High Performance
Graphics. 33–37.

[23] Tero Karras and Timo Aila. 2013. Fast parallel construction of high-
quality bounding volume hierarchies. In Proceedings of High Perfor-
mance Graphics. 89–99.

[24] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael
Garland, and David Glasco. 2011. GPUs and the future of parallel
computing. IEEE Micro 31, 5 (2011), 7–17.

[25] Sean Keely. 2014. Reduced precision hardware for ray tracing. In
Proceedings of High Performance Graphics. 29–40.

[26] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast
and extensible DRAM simulator. IEEE Comput. Arch. Lett. PP, 99
(2015), 1–1.

[27] Dirk Koch and Jim Torresen. 2011. FPGASort: A high performance
sorting architecture exploiting run-time reconfiguration on FPGAs for
large problem sorting. In Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. 45–54.

[28] Daniel Kopta, Konstantin Shkurko, J. Spjut, Erik Brunvand, and Al
Davis. 2015. Memory considerations for low energy ray tracing. Com-
put. Graph. Forum 34, 1 (2015), 47–59.

[29] Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels con-
sidered harmful: Wavefront path tracing on GPUs. In Proceedings of
High Performance Graphics. 137–143.

[30] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David
Luebke, and Dinesh Manocha. 2009. Fast BVH construction on GPUs.
Comput. Graph. Forum 28, 2 (2009), 375–384.

[31] Jaedon Lee, Won-Jong Lee, Youngsam Shin, Seokjoong Hwang,
Soojung Ryu, and Jeongwook Kim. 2014. Two-AABB traversal for
mobile real-time ray tracing. In Proceedings of the SIGGRAPH Asia
Symposium on Mobile Graphics and Interactive Applications 14.

[32] Won-Jong Lee, Youngsam Shin, Jaedon Lee, Jin-Woo Kim, Jae-Ho
Nah, Seokyoon Jung, Shihwa Lee, Hyun-Sang Park, and Tack-Don
Han. 2013. SGRT: A mobile GPU architecture for real-time ray trac-
ing. In Proceedings of High Performance Graphics. 109–119.

[33] Wei Liu and Alberto Nannarelli. 2012. Power efficient division and
square root unit. IEEE Trans. Comput. 61, 8 (2012), 1059–1070.

[34] Xingyu Liu, Yangdong Deng, Yufei Ni, and Zonghui Li. 2015. Fast-
Tree: A hardware KD-tree construction acceleration engine for real-
time ray tracing. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition. 1595–1598.

[35] Jan Lucas, Sohan Lal, Michael Andersch, Mauricio Alvarez-Mesa,
and Ben Juurlink. 2013. How a single chip causes massive power
bills GPUSimPow: A GPGPU power simulator. In Proceedings of the
IEEE International Symposium on Performance Analysis and System
Software. 97–106.

[36] J. David MacDonald and Kellogg S. Booth. 1990. Heuristics for
ray tracing using space subdivision. Vis. Comput. 6, 3 (1990), 153–
166.

[37] Morgan McGuire. 2011. Computer graphics archive. Retrieved Feb
30, 2017 from http://graphics.cs.williams.edu/data/meshes.xml.

[38] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi. 2009. CACTI 6.0: A Tool to Model Large Caches. Techni-
cal Report. HP Laboratories. 22–31 pages.

[39] J. Nah, H. Kwon, D. Kim, C. Jeong, J. Park, T. Han, D. Manocha,
and W. Park. 2014. RayCore: A ray-tracing hardware architecture for
mobile devices. ACM Trans. Graph. 33, 5 (2014), 162:1–15.

[40] Jae-Ho Nah, Jin-Woo Kim, Junho Park, Won-Jong Lee, Jeong-
Soo Park, Seok-Yoon Jung, Woo-Chan Park, Dinesh Manocha, and
Tack-Don Han. 2015. HART: A hybrid architecture for ray tracing
animated scenes. IEEE Trans. Vis. Comput. Graph. 21, 3 (2015), 389–
401.

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

http://www.drampower.info.
http://www.bulletphysics.org.
http://ieeexplore.ieee.org/abstract/document/7903616/
http://graphics.cs.williams.edu/data/meshes.xml.

169:14 • T. Viitanen et al.

[41] Jae-Ho Nah, Jeong-Soo Park, Chanmin Park, Jin-Woo Kim, Yun-
Hye Jung, Woo-Chan Park, and Tack-Don Han. 2011. T&I engine:
Traversal and intersection engine for hardware accelerated ray tracing.
ACM Trans. Graph. 30, 6 (2011), 160.

[42] Jacopo Pantaleoni and David Luebke. 2010. HLBVH: Hierarchical
LBVH construction for real-time ray tracing of dynamic geometry. In
Proceedings of High Performance Graphics. 87–95.

[43] Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash, and Tulika
Mitra. 2015. Power-performance modelling of mobile gaming work-
loads on heterogeneous MPSoCs. In Proceedings of the Design Au-
tomation Conference. 201.

[44] PowerVR. 2015. PowerVR Ray Tracing. Retrieved Feb 30, 2017 from
https://imgtec.com/powervr/ray-tracing/.

[45] Maxim Shevtsov, Alexei Soupikov, Alexander Kapustin, and Nizhniy
Novorod. 2007. Ray-triangle intersection algorithm for modern
CPU architectures. In Proceedings of GraphiCon, Vol. 2007.
33–39.

[46] Hojun Shim, Nachyuck Chang, and Massoud Pedram. 2004. A com-
pressed frame buffer to reduce display power consumption in mobile
systems. In Proceedings of the Asia and South Pacific Design Automa-
tion Conference. 819–824.

[47] Josef Spjut, Andrew Kensler, Daniel Kopta, and Erik Brunvand. 2009.
TRaX: A multicore hardware architecture for real-time ray tracing.

Trans. Comput.-Aid. Des. Integr. Circ. Syst. 28, 12 (2009), 1802–
1815.

[48] Joseph Spjut, Daniel Kopta, Erik Brunvand, and Al Davis. 2012. A
mobile accelerator architecture for ray tracing. In Proceedings of the
Workshop on SoCs, Heterogeneous Architectures and Workloads.

[49] Timo Viitanen, Matias Koskela, Pekka Jääskeläinen, Heikki Kultala,
and Jarmo Takala. 2015. MergeTree: A HLBVH constructor for mo-
bile systems. In Proceedings of SIGGRAPH Asia, Technical Briefs.
12.

[50] Timo Viitanen, Matias Koskela, Pekka Jääskeläinen, and Jarmo
Takala. 2016. Multi bounding volume hierarchies for ray tracing
pipelines. In Proceedings of SIGGRAPH Asia, Technical Briefs. 8.

[51] Ingo Wald. 2007. On fast construction of SAH-based bounding volume
hierarchies. In Proceedings of the IEEE Symposium on Interactive Ray
Tracing. 33–40.

[52] Ingo Wald, Solomon Boulos, and Peter Shirley. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies. ACM
Trans. Graph. 26, 1 (2007), 6.

[53] Sven Woop, Jörg Schmittler, and Philipp Slusallek. 2005. RPU: A
programmable ray processing unit for realtime ray tracing. ACM Trans.
Graph. 24, 3 (2005), 434–444.

Received March 2017; accepted June 2017

ACM Transactions on Graphics, Vol. 36, No. 5, Article 169, Publication date: October 2017.

https://imgtec.com/powervr/ray-tracing/.

