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The directional distribution of radiant flux reflected from roughened surfaces is analyzed on the basis
of geometrical optics. The analytical model assumes that the surface consists of small, randomly disposed,
mirror-like facets. Specular reflection from these facets plus a diffuse component due to multiple reflections
and/or internal scattering are postulated as the basic mechanisms of the reflection process. The effects of
shadowing and masking of facets by adjacent facets are included in the analysis. The angular distributions
of reflected flux predicted by the analysis are in very good agreement with experiment for both metallic
and nonmetallic surfaces. Moreover, the analysis successfully predicts the off-specular maxima in the
reflection distribution which are observed experimentally and which emerge as the incidence angle in-
creases. The model thus affords a rational explanation for the off-specular peak phenomenon in terms of
mutual masking and shadowing of mirror-like, specularly reflecting surface facets.
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N the calculation of radiant interchange, rough
surfaces are usually assumed to be diffuse reflec-
tors. Recent experiments!-?2 have shown, however, that
the diffuse distribution is approached with increasing
surface roughness only when the incident flux arrives
. in a near-normal direction. At moderate and large
angles of incidence, diffuse reflection is not approached
as the surface roughness increases. Instead, a maximum
in the distribution of the reflected radiance occurs at
an angle (relative to the normal) larger than the
specular angle.
Evidence of the off-specular peak phenomenon has
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frequently appeared in published reflectance data. A
survey of pertinent contributions to the subject is
presented elsewhere,! to which additional references
may be appended.>~ Off-specular peaks have been ob-
served for both metallic and nonmetallic surfaces!; an
approximate criterion for their appearance is that the
root-mean-square surface roughness o,, is comparable to
or greater than the wavelength of the incident radiant
energy (om/A21.0).

The present paper is aimed at prov1d1ng a model of
reflection by a rough surface which successfully predicts
the experimental findings. Reflection of electromagnetic
waves by a roughened reflecting surface can be studied
analytically by using either physical or geometrical
optics. The physical-optics (or wave-theory) approach
has been applied to the scattering of radar waves from

3S. Tanaka, J. App&led Physics (Japan) 25, 207 (1956); 26,
85 (1957); 21, 600 758 (1958); 28, 508 (1959).
( W) M. Brandenberg and J T. Neu, J. Opt. Soc. Am. 56, 97
1966),
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rough surfaces, and an excellent summary of the litera-
ture is available.® This approach is, in principle, capable
of predicting the angular distribution of reflected flux
and the dependence on angle of incidence and wave-
length. Typically, however, it has been assumed that
the reflecting surface is a perfect electrical conductor,
and that the incident flux arrives from a near-normal
direction so that multiple reflections and shadowing by
surface asperities do not occur. Solutions which avoid
the latter assumption have not been obtained, owing to
the added complexity. As a result, none of the existing
analytical models based on physical optics predict the
observed off-specular peaks. Consequently, we con-
centrated on a model employing the mathematically
simpler geometrical optics.

Geometrical optics makes use of the ray-like nature
of light. It is generally able (o explain the gross behavior
of light when the wavelength is small compared with
the pertinent physical dimensions of the system. There-
fore, in the case of reflection by a rough surface, the
ray theory is, strictly speaking, valid only when the
surface roughness is large compared to the wavelength
of the radiation (¢./N>1).

Two models based on geometrical optics have already
been proposed to explain the off-specular peaks. These
models were formulated in efforts to explain the off-
specular peaks in the experimental data of the respec-
tive authors. The data were obtained in the plane of
incidence® using visible light and roughened nonmetallic
surfaces. Correspondingly, the models were essentially
developed for, and applied in, the plane of incidence.

The first of such models, due to Pokrowski,” consists
of specular reflection (obeying the Fresnel equation)
from small mirror-like facets on the surface, plus a
more or less diffuse scattering that originates both on
the surface and internally. Pokrowski attributed the
off-specular peaks to reflection from the facets. The
resulting analytical representation has four arbitrary
constants; these can be adjusted to provide a satis-
factory fit for some of Pokrowski’s reflection data for
flux arriving at an angle of incidence ¥=280°. In all
cases, however, the predicted distributions become in-
finite at §=90°. Such infinite values of reflectance are
in sharp disagreement with experiment. [ The zenith
angles of incidence and reflection are measured from the
surface normal and are respectively denoted by ¥ and 8
(see Fig. 1).] '

Later, Schulz® modified the Pokrowski model by
giving a statistical distribution of slopes to the mirror-
like facets on the surface. In effect, this provides addi-
tional arbitrary constants. Schulz, however, did not fit

5P, Beckmann and A. Spizzichino, The Scattering of Electro-
ngzérgelic Waves from Rough Surfeces (Pergamon Press, New York,

6 The plane of incidence includes the incident beam and the
surface normal.

7 G. I. Pokrowski, Z. Physik 30, 66 (1924); 35, 34 (1925); 35,
390 (1926); 36, 472 (1926).

8 H. Schulz, Z. Physik 31, 496 (1925).
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the analytical model to his own data. It can be shown
that the Schulz modification yields weak off-specular
peaks, but the absolute maximum is still infinite and
is at §=90°.

The more recent model of Middleton and Mungall®
contains the mirror-like-facet and diffuse-scattering
mechanisms of Pokrowski—Schulz, but also includes a
multiplicative factor to account for the shadowing and
masking of the elementary mirror-like facets by ad-
jacent facets. The multiplicative factor causes the
model to predict a finite value for the reflectance at
#=90°, which is in better accord with experiment. The
resulting equation has three arbitrary constants and,
on the basis of numerical evaluations by Middleton
and Mungall, appears to describe certain trends char-
acteristic of their experimental data. For incidence at
¥=75°, the distributions calculated by Middleton and
Mungall exhibit off-specular peaks at zenith angles
75°<0<90°. However, at smaller angles of incidence,
their calculated distributions display a maximum either
at the specular angle or at §=90°. The ofi-specular
peaks were attributed by these authors to the shape of
the Fresnel reflection curve, their specific interest being
in a nonmetal. If this view is accepted, then the model
would not predict off-specular peaks for metals.’®

For the aforementioned cases, where the distribu-
tions displayed a maximum at 6=90° for smaller inci-
dence angles, we could not reproduce the off-specular
maximum for incidence at ¢=75° by numerical evalua-
tion of the Middleton and Mungall model. Rather, the
calculated reflectance distributions for ¢¥=75° also
displayed a maximum at §=90°. This was brought to
the attention of Mungall, who, in a personal communi-
cation,! expressed the view that the calculations re-
ported in the published paper® seem to be in error
for the ¥=175° cases just discussed.? Consequently,
we conclude that the Middleton and Mungall model
does not predict off-specular peaks of the type ob-
served experimentally.

Thus, we conclude that both of the previously pro-
posed models are deficient. That of Pokrowski and
Schulz is unrealistic because it predicts infinite re-
flectance as @ approaches 90°. The Middleton and
Mungall analysis on the other hand, exhibits significant
departures from experiment. A model which overcomes
these objections is developed in the following sections.
The present analysis predicts the angular distribution
of flux reflected throughout the entire hemisphere above
the reflecting surface, and exhibits off-specular peaks
for both metallic and nonmetallic surfaces. The formu-
lation is based on geometrical optics and applies when
om/N>>1. Before proceeding with the development of

* W. E. K. Middleton and A. G. Mungall, J. Opt. Soc. Am. 42,
572 (1952).

1 Fresnel reflectance curves for a metal and ncnmetal are
shown in Fig. 6 of this paper.

1 A. G. Mungall (private communication, 23 September 1965).

12 The original calculations were performed by hand; the present
re-evaluation employed an electronic computer,
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the model, we will present definitions and relevant ex-
perimental data.

DEFINITIONS AND COORDINATE SYSTEM

The angular distribution of reflected radiant flux is
conveniently expressed in terms of the bidirectional
reflectance. The designation “bidirectional” indicates
that two directions are involved: the direction of in-
cidence and the direction of reflection. The coordinate
system used to describe these directions is shown in
Fig. 1, which pictures the hemisphere above a reflecting
surface element dA4. The direction of the incident radia-
tion is specified by its zenith angle ¢ measured from
the surface normal. The direction of the reflected flux
requires specification of two angles: the zenith angle 6
measured from the surface normal and the azimuthal
angle ¢ measured from the plane of incidence. These
angles are conveniently combined in the reflection
triplet (¥;6,4), where the first angle denotes the in-
cidence direction and the second and third specify
the reflection direction. For surfaces of isotropic rough-
ness, as assumed here, the reflection triplet is a sufficient
description of the angular directions.

To facilitate the definition of bidirectional reflectance,
we first define radiance (V). Radiance is the radiant
flux (@) per unit solid angle (w) in the direction of a
ray per unit projected area (Acosf or Acosy) perpen-
dicular to the ray. Thus, the radiant flux from a small
source of radiance N, in the direction of d4 is

a®; (l,(/) =N;(¥) cosydAdw;, (1a)

where dw; is the solid angle of the source when viewed
from dA. On the other hand, the radiance of d4 in the
direction (6,¢) due to reflection of radiation from this
source is dN . (y; 8,6). This is designated dN. to em-

INCIDENT BEAM z

SURFACE NORMAL

Fic. 1. Spatial angles of incident and reflected flux.

18 The reflection triplet (¢;6,¢) applies to quantities which
depend on the angle of incidence and the angles of reflection. A
single angle in parentheses is used for quantities which depend
on only one angle, N
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phasize that it is associated with a small source. The
reflected radiance N, of d4 in the direction (8,¢) is
then the integral of dN,(¥;0,¢) over all sources from
which radiant flux is incident on the reflecting surface.
If a small collector is placed so that it subtends a solid
angle dw, when viewed from dA4 in the direction 0,9)
then the radiant flux from the small source refiected by .
dA that is intercepted by the collector is

a®,(y; 8,0)=dN.(; 6,6) cosfdAdw.. (1b)

The bidirectional reflectance is denoted here by the
symbol p. Tt is defined as the reflected radiance (dN,)
in the direction (0,¢) divided by the incident radiant
flux from the small source per unit surface area (d®;/d4);
that is,

dN,(y;0,4) dN.(¥;0,¢)
py;0,0)= —=

db:(9)/dA  Niy) cospdw;

The reflectance defined by Eq. (2) has also been called
biangular reflectance,>™* apparent unidirectional re-
flectance,’® and partial reflectance.’®'” We use the term
bidirectional reflectance! because it clearly connotes the
dependence on direction of illumination and direction of
reflection. The definition of bidirectional reflectance
represented by Eq. (2) leads to certain important .
reciprocal relations among reflectances. 7

In the present application, the foregoing definitions
are applied monochromatically.

@)

EXPERIMENTAL REFLECTANCE
DISTRIBUTIONS

To provide orientation for the forthcoming analytical
development, it is useful to examine some representa-
tive, experimentally determined reflectance distribu-
tions. The emergence of the off-specular-peak phenome-
non with increasing incidence angle ¢ is illustrated in
Fig. 2. This figure includes bidirectional reflectance
distributions for both a metal and a nonmetal. Addi-
tional results and details of the experimental measure-
ments are reported elsewhere.!18

In the figure, the bidirectional reflectance in the
direction 8 is plotted relative to that in the specular
direction =4y. The abscissa is the reflection angle 8
and the curve parameter is the incidence angle .
Figure 2 is for the plane of incidence (¢=0° or 180°);
positive and negative abscissa values correspond to
$=0° and ¢=180°, respectively. This convention is
used throughout the present work. Figures 2(a) and
2(b) apply to aluminum-coated aluminum and mag-
nesium oxide ceramic specimens, respectively, at a .
wavelength A=0.5 u.

# 7, A, Clark, Ed., Theory and Fundamental Research in Heai
Transfer (Pergamon Press, New York, 1963), p. 7.

15 H, J. McNicholas; J. Res. Natl. Bur. Std. (U. 8.) 1, 29 (1928}

16 C. von Fragstein, Optik 12, 60 (1955). :

17 F, E. Nicodemus, Appl. Opt. 4, 767 (1965).

18 K. E. Torrance, Ph.D. dissertation, University of Minnesota
(March 1966).



1108

S T

]

2.8
i i

P(¥;0,0°%
WT

(0]
8,DEGREES
40»-[ T ] T I 1] l T ] T I T [ T [ T !
3.6—
<Z—BREAK IN SCALE
24—
5 o 2.0
d R (b)
33 I.G——
a|a
.2 ¥ = 10° 45°
—————————— =\?+‘+~¢-+
8
T 7S ]
| e e e i e
-80 -40 o} 40 80
8, DEGREES

F1c. 2. Bidirectional reflectance distributions in the plane of
incidence for various angles of incidence ¥, A=0.5 p. (a) Alumi-
num (2024-T4), aluminum coated, ¢»=1.3 u. (b) Magnesium
oxide ceramic, g, =1.9 p.

The aluminum specimen was taken from a bar of
2024-T4 alloy. After the surface was prepared, it was
coated with a vacuum-deposited layer of very pure
aluminum. The ceramic specimen is a high purity
(99.99%) fused polycrystalline magnesium oxide ce-
ramic supplied by Honeywell, Incorporated. The test
surfaces were initially polished flat using a standard
optical polishing technique. Subsequently, a similar
technique was used to roughen the surfaces, using
grinding grits of 31 x4 diameter. Carborundum grit and
aluminum oxide grit were used for the aluminum and
magnesium oxide specimens respectively. The surface
roughness of the test specimens was measured with a
stylus profilometer (Taylor-Hobson Talysurf model 3).
The measured surface roughness was o, =1.3 u for alu-
minum and o,=1.9 u for the ceramic.

The developing ofi-specular peaks shown in Fig. 2
are representative of the case in which the surface
roughness is comparable to or larger than the wave-
length of the radiation (¢,/A21.0). In the type of
presentation employed here, an ideal diffuse surface
(i.e., ong which obeys Lambert’s cosine law of reflec-

K. E. TORRANCE AND E. M.

SPARROW Vol. 57
tion) would have a constant value of the relative
bidirectional reflectance equal to 1.0. Thus, the devia-
tion of any of the curves from the dashed reference
line, drawn at an ordinate of unity, is a measure of
how they differ from the ideal diffuse limit.

The results for near-normal incidence, ¥=10° re-
semble the diffuse limit. As the angle of incidence
increases, it is apparent that the corresponding reflect-
ance distributions differ markedly from that for a
diffuse surface. For incidence at ¢y =45°, the distribu-
tions display a maximum in the region §=380° to 83°.
As ¢ increases still further, the maxima in the vicinity
of 8=85° grow rapidly in magnitude, until, at ¢ =75°,
the off-specular peak dominates the distribution. More-
over, this off-specular maximum is quite different in
shape from the sharp, specular-reflection maximum
occurring at =y on a smoother surface. It is thus
evident that the diffuse distribution is approached only
when the angle of incidence is near normal.

DEVELOPMENT OF THE THEORY
Formulation of the Model

Reflection from a roughened surface is assumed to be
composed of two components: specular reflection from
mirror-like surface facets—a function of the angles of
reflection, and a diffuse component—independent of
angles of reflection. The diffuse component may origi-
nate either from multiple reflections among the facets
and/or from internal scattering, while the specular
component is subject to mutual shadowing and mask-
ing by adjacent facets.

The reflected flux is thus pictured as being composed
of a uniformly scattered component plus a perturbation
due to the mirror-like facets. Clearly, this initial premise
associates the off-specular peaks with specular reflec-
tion from the facets. This model of reflection is in
general accord with measurements of the state of
polarization of light reflected from rough surfaces.»%19.2
In the development that follows, cognizance has also
been taken of the suggestions of Christie.?

Fic. 3. (a) Reflection at a mirror-like facet.
(b) Spherical triangle of reflection.

15 G. M. Gorodinskii, Opt. Spectry. 16, 59 (1964).

20V, K. Polyanskii and V. P. Rvachev, Opt. Spectry. 20, 391
(1966).

u A, W. Christie, J. Cpt. Soc. Am, 43, 621 (1953).
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The just-discussed composition of the reflected flux is
expressed as

AN, (y;0,0)=dN. .({; 0,6)+dN. o). 3)

The differential notation d¥,, dN, , and dN, 4 is used
to emphasize that these quantities are associated with
a small radiant source. If a source of constant radiance
N; is oriented at various angles of incidence ¢, the
diffuse component of reflected flux will vary directly
as the cosine of the angle . This is because the flux
incident on a unit area of surface varies as cosy. Thus,

AN, () =alN; cosy, 4

where ¢ is a constant.

The angular dependence of the flux that is specularly
reflected from the elementary mirrors is not so easily
determined. First, consider flux reflected from the single
mirror-like facet shown in Fig. 3(a). Flux impinges at
an angle ¢’ with respect to the normal #’ of the facet
surface. Specular reflection occurs in the direction ¢
=y/. In general, the angles ¢’ and ¢’ are different {rom
the angles ¥ and 6, the latter being measured with
respect to the normal # of the mean surface d4. To
proceed, it is necessary to relate these pairs of angles.

Consider, as is illustrated in Fig. 1, an element of
surface d4 which is illuminated by a source of radiance
N, subtending a solid angle dw; when viewed from a
point O in dA4. Let Q be a point on the intersection of
dw; with the unit sphere. Similarly, imagine that re-
flected flux is collected within a solid angle dw, and
that point T lies on the unit sphere within dw,. The
normals of the facets at O which can specularly reflect
flux incident from Q into dw, lie in an elementary solid
angle do’ containing the line OV which bisects the angle
QOT. The angle QOV is the angle of incidence with
respect to the facets, ¢/, and the angle VOT is the facet
reflection angle 6’. The facet normals are inclined at
an angle VOZ=a with respect to the normal of the
mean surface.

Let Pdw’ be the number of facets per unit surface
area, whose normals are contained within do’. For
isotropic surfaces, a gaussian probability distribution
for P with rotational symmetry about the surface
normal OZ may be assumed, that is,

P=Pa)=bexp(—c%?), (5)

where b and ¢ are constants.
The number of facets in d4 with normals lying
within do’ is
Pa)de'dA.
Assuming each facet to be of area f, the total reflecting
area of the facets is

[P (a)dw'dA

and the projection of this area in the direction of the

source is
f cos’ Pla)dw'dA.
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The incident radiance N, is the radiant flux per unit
projected area and per unit solid angle, Eq. (1a). Thus,
the flux incident upon the facets whose normals lie
within do’ is given by

d®;= N, cosy’ P(a)de’dAdw;. (6)

The surface is not a perfect reflector, hence, only a
fraction of the flux reaching the facets is reflected.
This fraction is given by the Fresnel reflectance F(J/,4)
where 7 is the complex index of refraction of the
material for normal incidence. The complex index #
can be expressed in terms of the real index of refraction,
#, and the coefficient of absorption, &, as #=n—ik.
The function F (¢’,A4) is calculated from the Fresnel
equation.® Thus, the flux reflected from the facets
with normals in do’ is

F@/ A)d®;. )

So far, masking and shadowing of one facet by
adjacent facets has been neglected. Adjacent facets
may obstruct either the flux incident upon a given facet
or the flux reflected from it. Clearly, this will be a
function of the angle of incidence and the angles of
reflection. The analytical representation of the masking
and shadowing factor G will be derived in the next
section. For the present, it suffices to say that G
depends only on the projections of ¥ and 4 onto the
plane determined by the facet normal and the surface
normal. These projections are denoted by ¢, and 4,
and are shown in Fig. 3(b). The factor G (¢,,,8,) is the
fraction of an illuminated facet that actually con-
tributes to the reflected flux. It will henceforth be
referred to as the geometrical attenuation factor. Thus,
the flux specularly reflected from the element of area is

d®r=G (5,0, F W' ,1)d;
= NG p0:)F @' 71) cosy’P(a)dw' dAdw;. (8)
The reflected radiance dN. . (¥;0,¢) represents the
specularly reflected radiant flux per unit projected
surface area and per unit solid angle; see Eq. (1b).
The elementary contribution to the flux specularly re-

flected from the element of area d4, in the elementary
solid angle dw,, can be expressed in terms of dN, , as

d®,=dN, ({; 0,0) cosbdddw,. (9)

The elementary quantities of flux expressed by Eq.
(8) and (9) are equal, and also®

dw'=dw,/4 cosy’, (10)

so that
AN+ (¥ 0,9)
= (/N dwi/F W' )G W0,)/cosb]P (). (11)
This can then be combined with Egs. (3), (4), and (5)
%S, Flugge, ed., Handbuch der Plysik (Springer-Verlag, Berlin,

1928), Vol. 20, pp. 240~250.
% W. A. Rense, J. Opt. Soc. Am. 40, 55 (1950).
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to yield

AN, ;0,0)= (0fNides/4)F (V' 7)[G W 185)/cost |
Xexp(—c2a?)+alN;cosy. (12)

The bidirectional reflectance can now be evaluated.
Using Eq. (2), we find the ratio of the bidirectional
reflectance p(¥;6,4) 'to that in the specular direction
of the mean surface p(¥; ¢¥,0°),

p(l;0,0) dN.(¥;09)
P 9,0°) AN, ;5 9,0%)
gF (W' )G (¥p85)/ cosf] exp(—ca®) + cosy
T FAIGHW)/ cosy ]+ cosy

since a=0° when §=¢ and ¢=0°. The letter g denotes
an adjustable constant which determines the relative
contributions of the two assumed modes of reflection:
specular reflection from the mirror-like surface facets
and diffuse reflection. Indeed, the former mode domi-
nates when g is large and the latter mode exists alone
when g=0.

The angles ¢/, a, ¥p, and 6, are related to ¥, §, ¢,
through the fundamental spherical triangle of reflec-
tion defined by Fig. 1 and shown in Fig. 3(b). Spherical
trigonometry gives the following relations:

Y =1 cos™'[cosh cosy—sing siny cose ],

a=cos[cosy cosy/+siny siny’ cosBr],  (14)
¥,=tan'[cosBs tany ], 0,=¥,+2e,
where
B1=sin"[sing sinf/sin2y" ],
Be=m—sin [ sinB; siny’/sina ].
In the plane of incidence, Egs. (14) simplify to
V=0+0)/2, a=00—¥)/2, ¥,=¥, 0,=0. (15)

By applying Eqs. (14), we can evaluate the bidirec-
tional reflectance ratio expressed by Eq. (13) for any
direction in the hemisphere above the reflecting surface.

The Geometrical Attenuation Factor

The geometrical attenuation (masking and shadow-
ing) factor is derived here under the following assump-
tions: (1) Each specularly reflecting facet comprises
one side of a symmetric V-groove cavity. (2) The
longitudinal axis of the cavity is parallel to the plane
of the mean surface. (3) All azimuthal orientations of
the longitudinal axis of the cavity are assumed equally
probable. (4) All masking and shadowing effects take
place within the cavities; this is equivalent to assuming
that the upper edges of all V-groove cavities lie in the
same plane. (5) Only the first reflection of an incident
beam is added to the specularly reflected flux. (6) All
multiple reflections are assumed to be perfectly diffused.

K. E. TORRANCE AND E. M.
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MASKED

SHADOWED

{b)

FiG. 4. (a) Geometry of the V-groove cavity.
(b) Simultaneous masking-shadowing.

The geometry of the cavity is depicted in Fig. 4(a).
Inspection of the top view reveals that, in general, the
plane containing the incident and reflected beams
makes a transverse cut across the cavity axis. How-
ever, the projection of the path of the flux onto a plane
perpendicular to the cavity axis [end view of Fig. 4(a) ]
is sufficient for the formulation of the masking and
shadowing effect. The plane perpendicular to the cavity
axis includes the normals to the cavity walls and to
the plane of the mean surface. Thus, the projection
angles ¥, and 6, introduced in the previous section are
the appropriate defining angles for the incident and
reflected beams. In this connection, it is worthwhile
to reiterate that ¢, and @, are completely determined
[Eqs. (14)] as soon as ¥, 6, and ¢ are specified.

The derivation that follows is carried out in the plane
containing ¥, and 6,, and for convenience, ¥, is always
assumed positive. To avoid introducing an azimuthal
reflection angle, values of 6, and « as shown in Fig.
4(a) are assumed positive, that is, positive values are
measured clockwise from the z axis.

Fig. 4(a) illustrates the case in which part of the
flux reflected from a fully illuminated facet is inter-
cepted by the adjoining face of the cavity. Such block-
age of the specularly reflected energy will be called
masking. Reversing the flux path in Fig. 4(a) illustrates
the case in which the reflecting facet is only partially
illuminated. Such an effect will be called shadowing. A
third possibility exists, as shown in Fig. 4(b), for the
case of large incidence angles ¥, and large negative
reflection angles 6, such that simultaneous masking-
shadowing can occur.

The geometrical attenuation factor G(¥p,0,) is the
fraction of the facet surface that contributes to the
reflected flux. From Fig. 4(a), G can be defined as

GWpbp)=1—(m/1). (16)

A value of G less than unity is caused by masking when
the flux path is as shown in Fig. 4(a), by shadowing
when the flux path is reversed, and by masking-
shadowing when the flux path is as shown in Fig. 4(b).
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(a)

(c)

Fic. 5. (a) and (b) Tlustration of the reflection angles 8,* and 6,**,
respectively. (c) Reflection triangle for V-groove cavity.

For a given ¢, a range of reflection angles 0, exists
for which G=1 and none of the flux is obstructed. The
limits of this range are denoted by 6,* and 8,**,

For all incidence angles ¢, there is a masking region
at positive 6, values between 6,* and #/2. The 6,*
corresponds to the condition that the reflected beam
is just parallel to the face of the adjoining cavity wall.
This situation is shown in Fig. 5(a), and 8,* is given by

012*: (‘l’p+7r)/3- (17)

For 6,**, on the other hand, consideration must be
given to two ranges of ¥,: 0<y,<7/4 and =/4<y,
<w/2. For each of these ranges, an equation for 9,**
will be derived.

For angles of incidence y,<w/4, there is a region
that is either masked or masked-shadowed at negative
6, values between —i/2 and 6,**. Since the angle at
which the reflected beam is inclined has a magnitude
greater than the angle of inclination of the incident
beam, the value of 8,** is found from the condition
that the reflected beam must be parallel to the face of
the adjoining cavity wall. This is shown in Fig. 5(b),
and 9,** is given by

Op**: (‘l/p_w)/& (18)

Consideration is next given to determining 6,** for
the range »/4<y,<w/2. For —¢,<6,<8,**, the in-
cident beam has a greater inclination than the reflected
beam, and shadowing occurs. The value of 6,** can

be obtained from Eq. (17) by reversing the flux path
and substituting ¢, for 6,* and 6,** for . Thus,

0,5% =3y, —. (19)

In the range of angles 6,*<6,<x/2 and —#/2<8,
<6,**, masking and/or shadowing will occur and G< 1.
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In particular, when 6,>6,* only masking occurs. For
the case of 6,<6,**, we must separately consider the
ranges ¢, <7/4 and v/4<y¢,<7/2, as in the foregoing.
In the first of these ranges, either pure masking or a
masking-shadowing can occur; however, the masked
region will always be the larger and the value of G can
thus be determined as if masking occurred alone. In
the second of these ranges, different conditions prevail
when —¢,<8,<6,** and when —7/2<6,<—y,. For
the former, pure shadowing occurs; while for the
latter, masking-shadowing occurs, with the masking
region being dominant.

When masking exists alone or dominates, the ex-
pression for G may be derived by utilizing the triangle

shown in Fig. 5(c). From the law of cosines
1t =m2+12—2ml cos[ 7+¢,—0,]. (20a)

By projecting the sides of the triangle onto the hori-
zontal, we find

n cosl (w/2) =0, = (I+m) cos[ (0,—¥,)/2]. (20b)

Elimination of #? leads to a quadratic equation for m/,
the solution of which yields

G(pbp)=1—(m/D)=1—[1—(1—-A%¥]/4,

where

(21a)

4 sin®f,— cos?[ (B,—¥p)/2 ]
- COSZ[(ep—‘/’p)/zj_ COSEG;D_‘K[/;D] Sinzap.

The negative square root was selected so that G is
positive. When Egs. (17) and (18) are inserted into
(21b), it can be shown that 4 =0. Introduction of this
result into Eq. (21a) leads to an indeterminate form
for G. This can be resolved by using L Hospital’s rule,
with the result that G=1 when 4 =0, thereby verifying
the internal consistency of the derivation. At 8,==47/2,
A=1 and G=0 in accordance with physical boundary
conditions.

In the case when shadowing occurs alone, G is
derived from Egs. (21) by replacing ¢, by 8, and 8,
by ¥, When Eq. (19) is introduced into the thus-
modified Egs. (21), it follows that 4 =0 and G=1. At
0,=—¥p, the values predicted by the original and
modified forms of Egs. (21) are identical. Thus, the
internal consistency of the entire derivation is verified.
The appropriate calculation formulas and their regions
of application are summarized in Table 1.

It has been noted in the foregoing that G— 0 as
6,— £7/2. Eq. (13) for the bidirectional reflectance
ratio contains the quantity G/cosf. As 6, — ==x/2, we
see from Fig. 3(b) that the angle 6 — #/2 and corre-
spondingly, cosf approaches zero. It can be shown!®
that (G/cosf approaches a finite limit as § — 7/2, given

by

(21b)

Jim [G(5,8,)/cos8 J=2 cota/cos (B:—¢),  (22)

where 5 is given in Eqgs. (14).
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Tasik I. Calculation formulas for the geometrical attenuation factor G (¥ p,8,).

Incidence angle

0<yp<n/4 7/4<Yp<w/2
Reflection angle Formula Reflection angle Formula
Yp—T —7/250,< —¢p Egs. (21)
—7/2<6,< Eqs. (21)
— <0, L<3¢Yp—7 Egs. (21) with ¢, and
#p interchanged
Yp—7 Yota Yptw
<6,< Gpfp) =1 SYp—m L6, < Gpbp)=1
3 3
Yotm Yt
<0,<7n/2 Egs. (21) <6,Z7/2 Egs. (21)

PREDICTED REFLECTANCE DISTRIBUTIONS

Directional distributions calculated from the just-
described model will now be presented and compared
with those of experiment. The experimental results
shown in Fig. 2 are representative of a larger body of
datal'® and display the significant characteristics for
both metals and nonmetals. Consequently, the pre-
diction of reflectance distributions compatible with
Fig. 2 will be the goal of the following paragraphs.

The foregoing analysis of reflection leads to the bi-
directional reflectance given by Eq. (13). Using G{,¥)
=1, we find that Eq. (13) becomes

p(¥;0,9)
o5 $,0°)
SF W )G W)/ cos8] exp(— ) + cosy
B ([P (A)/cost T+ cosy '

For a given angle of incidence ¢ and a given material,
the only quantities dependent on the reflection angles
are those appearing in the first term of the numerator,
that is,

(23)

F' )G W b5)/cosf ] exp(—c'e?). (24)

This factor is presumably responsible for the observed
off-specular peaks, and its behavior will now be in-
vestigated in detail.

The first ingredient of (24) is the Fresnel reflectance
F@/A), which is shown in Fig. 6 for magnesium oxide
and evaporated aluminum. The index ol refraction 7

1.0 v v st L
—
8— ALUMINUM
1 A=0.5u |
e A=4.0u -
< 1 i
54— —
o T MAGNESIUM OXIDE .
2 A =0.5p A=4.0u ]
8 s o s s vt AR B
0 20 40 60 80

¥', DEGREES

F16. 6. Fresnel reflectance.

at wavelengths A=0.5 ¢ and 4.0 1 was obtained from
the literature.® Fig. 6 reveals that the shapes of the
Fresnel reflectance curves for aluminum are quite differ-
ent from those of magnesium oxide. Such differences of
shape are commonly observed when Fresnel curves for
metals and nonmetals are compared. Since off-specular
peaks are observed for metals as well as for nonmetals,
it may be concluded that the Fresnel reflectance
F{/ #) cannot, in itself, be the cause of the peaks.
The third factor in (24), exp(—c%?), also cannot, in
itself, cause the peaks. The exponential attains a maxi-
mum value of unity at the angle «=0° and is sym-
metric about that point. The angle a=0° corresponds
to facets which lie parallel to the mean-surface plane
and ¢ determines the distribution of facet slopes about
that plane. Moreover, a=0° corresponds to reflection

16—
~|TTI||I‘III‘;II'[

12—

12—

XO:*' \‘I=75°'

. CHANGE

° OF SCALE

lelii‘l
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0
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F16. 7. The factor G(¥,6)/cosf in the plane of
incidence for various incidence angles ¢.

2 American Institute of Physics Handbook (McGraw-Hill Book
Co., New York, 1963), Second ed., pp. 6-12 and 6-107.
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in the specular-ray direction §=4y. At angles away
from a=0°, the exponential is less than unity, and the
product {(G/cosf) exp{—c%?) could cause off-specular
peaks only if G/cos# displayed a suitable behavior.

The quantity G/cosf must, therefore, be the key
factor which causes Eq. (23) to attain values greater
than unity. It is interesting to note that G/cosf is
strictly geometrical in nature and independent of any
arbitrary constants. Curves of G(,0)/cosf, as calcu-
lated from Eqs. (21) are presented in Fig. 7. The
abscissa is the reflection angle 6 and the curve pa-
rameter is the incidence angle ¢. Fig. 7 pertains to the
plane of incidence such that ¢, and 6, can be replaced
by ¢ and 8, respectively. Similar curves for a range of
azimuthal angles ¢ are presented later.

The striking feature of the results displayed in Fig.
7 is the great increase of G/cosf as § approaches +90°.
This increase is accentuated with increasing incidence
angle ¢. Such an increase is necessary for the occurrence
of off-specular peaks. The curves also exhibit local
maxima at negative §-values. These are quite similar
to the local maxima shown by the experimental results
for aluminum in Fig. 2(a) for ¢=45°, 60°, and 75°. It
is thus evident that the quantity G/cosf, as formulated
here, possesses a dependence on ¥ and 8 which is
suggestive of the experimental data.

The application of the multiplicative exponential
factor of expression (24) will now be discussed. In
working graphs, the function [G(¥,8)/cos6] exp(—c%?)
was plotted for values of the paramenter ¢ ranging
from 0.01 to 0.20. The resulting curves were appraised
on the basis of how well they predicted the growth of
the off-specular peaks shown in Fig. 2. A value of
¢=0.05 was judged best, although a change of ¢ by
+0.01 does not appreciably alter the distributions.
The appropriate value of ¢ may well be different for
other materials and other surface roughnesses. How-
ever, the foregoing choice of ¢=0.05 is substantiated

¥ T T T I T I T I T T T ]
28—

24—

20—

p(‘#’,910°)
Py, 0%
>
\
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11

-40 o} 40
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T1c. 8. Bidirectional reflectance distributions in the plane of

incidence for various incidence angles ¢ as calculated from Eq.
(23). F (¢',i)=1,¢=0.05, and g=%.
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F16. 9. Predicted bidirectional reflectance distributions corre-
sponding to the experimental distributions in Fig. 2. Calculated
from Eq. (23) with ¢=0.05 and F (/,i) evaluated at A=0.5 u.
(a) Aluminum, g=$%. (b) Magnesium oxide, g=2.

by experimentally-determined values of 0.035 and 0.046
reported for ground glass surfaces.?

The bidirectional reflectance ratio expressed by Eq.
(23) was then evaluated for various g values with the
Fresnel reflectance F(Y/';i) set equal to unity. This
avoids having to introduce the material properties of
the surface. In order that the level of the calculated
curves agree with the experimental curves for both
materials in Fig. 2 when ¢=75° a value of g=% was
selected. The predictions of Eq. (23) corresponding to
¢=0.05, g=2 and F=1 are shown in Fig. 8.

The calculated distributions pictured in Fig. 8
closely resemble the experimental curves in Fig. 2.
The curves in Fig. 8, however, exhibit neither the sharp
drop-off at large positive 6-values (beyond the off-
specular peak) nor the local maxima at negative 6-
values that are shown by the experimental curves for
aluminum. The former deficiency is attributable to
idealizations in the model used for the masking~
shadowing effect, while the latter can be attributed to
the assumed gaussian facet-slope distribution. It can
be shown that a modified gaussian distribution which
tends toward a constant value rather than to zero as
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« increases would permit the back peaks of Fig. 7 to
persist in a presentation similar to Fig. 8. Such a
modification did not appear to have a firm justification
and was not pursued further.

Fig. 9 shows the effect of introducing the appropriate
Fresnel reflectance into Eq. (23). New constants g
were chosen so that g-F(y=75° #)~% for the two
materials (a g value of 2 had been used in Fig. 8.)
The Fresnel reflectance curve for aluminum does not
vary significantly throughout its angular range, but
the Fresnel curve for magnesium oxide varies con-
siderably. Consequently, the curves in Figs. 8 and
9(a) differ only slightly, while the curves in Figs. 8
and 9(b) show significant differences. Indeed, in the
latter, the magnitudes of the off-specular peaks and
the values at §=0° are now in better accord with
experiment.

The over-all agreement between the corresponding
curves of Figs. 2 and 9 lends strong support to the
general validity of the present analytical model for
am/A>1. As 0,,/\ decreases to values less than unity,
the approach to specular reflection must be explained
by a model based on physical optics.

For the sake of completeness, the factor G(¥,,0,)/cost
and the relative bidirectional reflectance of Eq. (23)
were evaluated for various azimuthal angles ¢ out of
the plane of incidence. For this purpose, ¢=0.03,
g=1%, and F=1. The results are presented in Figs. 10
and 11 for three incidence angles, ¥=30°, 60°, and 75°.
These figures display the transition between results for
¢=0° and ¢=180° that have already been presented
in Figs. 7 and 8. Tt is evident that for each incidence
angle ¥, a smooth transition of angular distributions
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Fic. 10. The factor G (¢ ,,8,)/cosh for various azimuthal angles ¢.
(a) ¢=30° (b) ¢y =060°. (c) y=75°.
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Fic. 11. Bidirectional reflectance distributions for various

azimuthal angles ¢ as predicted by Eq. (23). F (¢/,/) =1, ¢=0.05,
and g=%. (a) ¢y =30° (b) ¢y=60° (c) ¢y="75°".

takes place as ¢ ranges from 0° to 180°. These figures
thus illustrate the diminution of the ofi-specular peaks
as the azimuthal orientation departs more and more
from ¢=0°,

CONCLUDING REMARKS

An analytical model for reflection by roughened
surfaces has been proposed and evaluated. The model
pictures the surface as consisting of small randomly-
disposed mirror-like facets. Specular reflection from
these facets plus a diffuse component due to multiple
reflections and/or internal scattering are assumed to
be the basic mechanisms of reflection. The effects of
shadowing and masking of facets by adjacent facets
are included. The analysis employs only geometrical
optics and applies when the surface roughness-to-wave-
length ratio (o./A) is greater than unity. The mathe-
matical formulation of these processes leads to Eq.
(23) for the angular distribution of the bidirectional
reflectance ratio. This relation predicts off-specular
peaks which emerge as the angle of incidence is in-
creased. The analytical predictions are in very good
agreement with experimentally determined angular
distributions for both metal and nonmetal surfaces.

The model thus affords an explanation for the off-
specular peak phenomenon in terms of the mirror-like
surface facets. Specular reflection from these facets
causes the radiance of the reflected flux to increase
markedly with increasing zenith angles of reflection
(measured relative to the mean-surface plane). This
great reflected radiance is attenuated at near-grazing
reflection angles by masking and shadowing of facets
by adjacent facets. The net result of these processes
is to cause off-specular peaks such as those observed
experimentally.



