
SHADOW ALGORITHMS FOR COMPUTER GRAPHICS

Franklin C. Crow

University of Texas at Austin
Austin, Texas

Appel [3] and then Bouknight and Kelley [5] have
demonstrated solutions to the shadow problem which

are discussed in this paper in the context of a
classification scheme for shadow algorithms.
Three classes of solution are currently identifi-
able (there may be further undiscovered classes).

Appel, Bouknight and Kelley have shown solutions
of one class and algorithms suggesting the other
two classes have been proposed but not yet imple-
mented.

The first class of algorithm, demonstrated by

Appel, Bouknight and Kelley, detects shadow boun-

daries as the image is produced by a raster-scan.
The edges of cast shadows are found by projecting

potential shadowing polygon edges onto the surface
being scanned. Shadow edges thus formed are then
projected onto the image plane. Upon crossing a

shadow edge, the color of a scan segment is
changed appropriately.

A second class of algorithm involves two passes
through a hidden-surface algorithm, or perhaps a
single pass through each of two differing algo-

rithms. The first pass distinguishes shadowed and
unshadowed surfaces and divides partially shadowed
surfaces by determining hidden surfaces from a
viewpoint coincident with the light source. The

colors of shadowed surfaces are then modified and

a second pass operates on the augmented data from

the observer's viewpoint.

The third class of shadow algorithm involves cal-
culating the surface enclosing the volume of space
swept out by the shadow of an object, its umbra.
The umbra surface is then added to the data and
treated as an invisible surface which, when pier-
ced, causes a transition into or out of an object
shadow.

A more complete explanation of the three classes
follows with suggested implementations in each

class. These will be preceded by remarks on
modeling of the light source and followed by an

attempted comparison of the practical difficulties
in implementing the three approaches.

MODELING THE LIGHT SOURCE

Light sources are generally modeled as either

points or directions. However, an actual light

ABSTRACT

Shadows are advocated for improved comprehension

and enhanced realism in computer-synthesized
images. A classification of shadow algorithms de-
lineates three approaches: shadow computation
during scanout; division of object surfaces into
shadowed and unshadowed areas prior to removal of
hidden surfaces; and inclusion of shadow volumes
in the object data. The classes are related to
existing shadow algorithms and implementations
within each class are sketched. A brief compari-

son of the three approaches suggests that the last
approach has the most appealing characteristics.

KEY WORDS AND PHRASES: computer graphics, hidden-

surface removal, shadows, shading, raster displays

CR CATEGORIES: 8.2

INTRODUCTION

A major deficiency in most computer-synthesized

shaded images to date has been the lack of sha-

dows. Although shadows are unneeded when the
light source is coincident with the eyepoint, a

fact which was used to advantage in many early
implementations, many of the more pressing appli-

cations for realistic images (eg. spacecraft dock-

ing and aircraft landing simulators) require sun-
lit images. Quite realistic images of scenes
which should contain shadows are now made, but

the success of these images relies on the assump-

tion of a diffuse light source such as a cloud-

masked sun.

There are situations in which shadows can be im-

portant. A cast shadow may make an important

piece of equipment virtually invisible under ac-

tual conditions even though it shows clearly in
a simulation without shadows. Applications of
computer graphics to architectural siting prob-

lems and environmental impact investigations
could require the calculation of shadows for

evaluating the need for airconditioning or the
availability of solar energy. Most importantly,
shadows provide valuable positional information;
the shadow cast by one object on another can
clarify otherwise ambiguous spatial relation-

ships. Moreover, shadows pose an interesting
problem; they should receive more attention than

they have been getting.

242

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
Siggraph ’77, July 20-22 San Jose, California

source has a finite size, a perhaps irregular
shape and a definite position in space relative to
the objects to be represented. Light sources of
finite size cast shadows involving an umbra and
penumbra. The umbra is that part of the shadow
space which receives no light from the source; the
penumbra, that part which receives light from some
part of the source but not all of it. Thus there
is a dark central area to any such shadow sur-
rounded by a border area in which a smooth change
from shadowed to unshadowed takes place. For an
irregularly shaped light source the penumbra could
be approximated by a linear variation in shade
over a strip of fixed width around the periphery
of any umbra. Calculating a penumbra can be ex-
pected to significantly increase the effort neces-
sary to represent shadows. Therefore, a point
light source or one infinitely far removed (speci-
fied by a direction only) will be assumed.

Shadow boundaries are determined by projecting
the silhouette of one object onto another. The
type of projection which may be used is dependent
on the position of the light source. The easiest
light source for which to calculate shadows is one
that is infinitely far removed since shadow boun-
daries may be found by an orthographic projection.
On the other hand, the calculation of shadow boun-
daries for a light source which has a position in
the object space varies in difficulty with the lo-
cation. If the source lies outside the field of
view, shadow boundaries can be calculated by using
the same sort of perspective projection used for
image display. However, when the light source
lies within the field of view, different methods
must be used. Since the conventional perspective

transformation is accurate only for a limited
field of view, either the space must be divided
into sectors radiating from the light source, in
which the perspective transform can operate, or
more complicated three-dimensional geometric meth-
ods must be used.

Projective transforms provide convenience and
efficiency. However, it is always possible to
define shadow boundaries in the object space by
using the light source position and the object
silhouette to define a surface and then calculat-
ing the intersection of that surface with other
objects.

CLASS ONE: SHADOW COMPUTATION DURING SCANOUT

Appel [2,3] and then Bouknight and Kelley [5] have
shown methods for rendering shadows which calcu-
late shadow boundaries while scanning the image.
Appel detects shadow boundaries by extending his
notion of quantitative invisibility. Quantitative
invisibility is a count of the number of surfaces
hiding a vertex (polygonal objects are assumed).
Therefore, a line segment is visible only if all
points on it have a quantitative invisibility of
zero. Changes in quantitative invisibility along
a segment are detected by Appel's hidden surface
algorithm and only the visible portions are drawn.
This method yields a line drawing.

Shadowed surfaces are determined during a scanning
procedure which is also used to shade the line
drawing. The scan is executed by generating "cut-
ting" planes through the eyepoint which intersect

Figure 1: ABE defines a "cutting plane" in Appel's algorithm.

Edges of polygon 1 are projected onto polygon 2 to

form shadow boundaries which are then projected onto

the image plane.

243

the picture plane in equally-spaced horizontal
lines (fig. 1). A set of scan segments is defined

by the intersection of visible lines and a cutting

plane. The quantitative invisibility with respect

to the light source (previously computed for all
visible vertices) is then used to determine those

segment parts which lie in shadow. Further detail

is available in Appel's publications [1,2,3].

Bouknight and Kelley developed a similar method
for shadow detection [4,5]. However, they en-

joyed an advantage in that their hidden-surface
algorithm was already based on a scanning process.
A secondary scan was used to detect shadow boun-
daries calculated by projecting edges upon the

surfaces being scanned. The primary scan followed

a raster pattern in image space which generated
the secondary scan, the corresponding path across

the visible surface in object space. Therefore,
shadow edges occurred where edges of other poly-
gons projected onto a secondary scan segment.

A procedure for finding all polygons which could
cast shadows on a given polygon was used to dimin-

ish the edge-projection computation. This routine

transformed all polygons to a pseudo-spherical
coordinate space with its origin at the light
source. Polygons were then tested for overlap and
a linked list was formed for each polygon, enab-
ling the other polygons which might cast shadows

on it to be easily found (In figure 1, polygon 2

would be linked to polygon 1). An expansion of
this overlap test leads to the second class of
algorithms as will be seen below.

The general approach exemplified by Bouknight-

Kelley can be analyzed as two basic operations:
(1) the shadow priority ordering of polygons and

(2) the calculation of projected shadow boundar-

ies. It is worth noting that these two opera-

tions are independent of the hidden surface algo-
rithm used for display and this could be applied

to virtually any polygon-based algorithm.

Many variations on the Bouknight and Kelley algo-

rithm can be developed. For example, the compu-

tation for their pseudo-spherical overlap test
grows as the square of the number of polygons.
It would therefore be advantageous to divide the

viewable object space into sectors radiating from
the light source position. This would allow all

polygons in a sector to be sorted to a shadow

priority order without reference to other sec-

tors. Shadow priority determination requires a

special sort such as the one used by Newell et al

[9]. The behavior of this algorithm (also obey-

ing an N-squared growth law) is discussed by
Sutherland et al [12].

Under favorable conditions, sectorization can
change the N-squared growth law of the Bouknight-

Kelley (or Newell et al) priority scheme to a

linear growth law. The growth of the sectored
scheme is proportional to S (N/S)**2 where S is
the number of sectors and N is the number of poly-

gons (as long as the general distribution of poly-

gons in space remains similar). If N/S is held

constant by increasing the number of sectors pro-

portionally with the number of polygons, the
priority stage obeys a linear growth law. How-

ever, this growth rate is complicated in the limit

244

by the fact that when sectors become so small that
a high percentage of polygons overlap sector boun-
daries, the effective number of polygons increas-
es. This is due to the fact that a polygon over-
lapping two sectors must be considered in both.
However, the potential linear growth rate makes
this an attractive approach both here and in the
design of sectorable algorithms in general.

The second basic operation, the calculation of

shadow boundaries, requires a process akin to

clipping. The polygon under consideration must be

used as a window against which polygons of a high-

er priority are clipped. The growth rate of this

operation is proportional to the product of the

number of edges in shadowed polygons and the num-

ber of edges in higher priority polygons, again an

N-squared growth rate. However, sectorization can

again provide an overall linear growth rate under

favorable conditions. (It should be noted that

the linked list used here by Bouknight and Kelley

is in some sense an optimized sectorization.) Two

factors can substantially reduce the constant of

proportionality in the growth law: (1) shadow cal-

culation need only be carried through for visible

polygons and (2) the calculation may terminate
when a polygon is discovered to be completely
shadowed.

In closing this section, it should be reemphasized
that in all shadow algorithms, a large amount of
computation can be saved by considering only the

silhouette of a shadowing object instead of each
of its polygons individually. This restricts

searching to only those edges which cause visible
shadow boundaries.

A SECOND CLASS: THE TWO-PASS APPROACH

It would appear that a hidden-surface algorithm
could be used to detect which surfaces are hidden

from the light source as easily as those which are
hidden from the eye. However, to be useful, the
algorithm must yield information which can be used

to generate an image, as seen from the eyepoint,

in a subsequent pass. This restriction limits the

class of applicable algorithms.

Sutherland, Sproull and Schumaker proposed that
hidden-surface algorithms could be divided into

object-space algorithms and image-space algorithms
[12]. This distinction turns out to be important

since the determination of shadow boundaries must

be made in object space so that the resulting in-

formation can be merged into the data to be sent
to the display algorithm. Thus image-space algo-

rithms which depend on the limited resolution of

the display medium to ease the determination of
hidden surfaces are inappropriate for this appli-

cation.

The algorithms characterized by Sutherland et al
[12] as operating strictly in object space all
suffer from discouraging growth laws (computation
increasing with the square of the amount of data).
Furthermore, where polygons are considered, they
are not treated as entities but broken into indi-
vidually treated sides. To create shadows, the
polygons must be treated as entities so that they
may be divided by shadow boundaries and returned

to the data base as smaller polygons to be fed to
the display algorithm. Eliminating the object-

space algorithms leaves the algorithm shown by

Newell, Newell and Sancha [9]. This algorithm
provides many useful techniques for splitting

polygons and determining overlap but the eventual
determination of what part of which surfaces are
hidden is done by overwriting in image space.

Sutherland has proposed another algorithm which is
more applicable to the problem [11]. Using clip-
ping techniques, a binary sort is executed sending

polygons and parts of polygons lying on one side
of a line out on one stream and those lying on the
other side off on a different stream. Such a pro-
cess is, of course, exactly what is needed for
determining divisions between shadowed and unsha-
dowed parts of surfaces. Furthermore, Suther-
land's algorithm holds the promise of a reason-

able growth rate. Since the algorithm operates by
recursive subdivision of the viewed space via a
2-dimensional binary sort of the data, an N log N
growth law may be achievable.

Sutherland also proposed improvements based on
considering only "contour" edges in the subdiv-
ision process. Contour edges are those edges

which separate frontfacing and backfacing polygons
at those places where the surface curves behind
itself or else edges which lie at the extremes of
the surface, for surfaces which don't close on

themselves [1]. Thus any area lying within the
bounds of a set of contour edges for a single sur-

face can be treated as a unit assuming that the
bounded surface is the frontmost surface in the
bounded area.

Clark has proposed a general scheme for approach-
ing hidden-surface algorithms which involves re-
cursive descent through a hierarchical data des-

cription [7]. The combination of this approach
with Sutherland's notion of clipping to contour

edges appears to hold promise for an interesting
shadow algorithm. If environmental restrictions
are imposed so that objects must be broken into
linearly separable sub-objects and groups of such
objects may also be linearly separated, then an

algorithm may be implemented along the following
lines.

The first step of this algorithm would use sort-
ing techniques akin to those of Newell, Newell and
Sancha to establish a front to back priority
ordering of the surfaces under consideration. The
hierarchical approach proposed by Clark may be
superimposed to first order otjects or groups of
objects, then to establish an order within such
objects or groups. Newell has recently suggested
an algorithm for sorting objects to a depth prior-
ity which could be applied here [10].

Note that, for purposes of shadow detection, the
silhouette of an object may be used to define a
"blot", or anti-window, under a perspective pro-
jection. Anything lying within the blot and far-
ther from the light source is clearly in shadow.
Therefore, the algorithm can proceed by augmenting
a collection of blots using the silhouette of each
convex sub-object in turn. Moving away from the
light source, surfaces hidden by the blot are
marked as shadowed. Other surfaces contribute the

245

By using the scheme proposed by Clark, the calcul-
ation of some object silhouettes may be avoided.
Following the hierarchical division of the data

(groups, objects, sub-objects), tests using
"bounding boxes" may be used to determine which
groups may overlap from the light source point of
view. The bounding box is defined by the range of
the object vertices over height and width (fig. 3).
Any time the bounding box of an object is found to
lie totally within the silhouette of an object of
higher priority, the first object is in shadow.
Similarly, if the bounding box of a convex object
(consisting of a single sub-object) fails to over-
lap any others then the object is clearly not in-
volved in any shadows. In these cases, there is
no reason to compute the silhouette.

The shadow algorithm may be driven by the hierar-

chical organization of the data. Thus groups of
objects may be processed in priority order, clos-
est group first. Within each group, objects will

be treated in priority order and within each ob-

unshadowed portion of their silhouettes to the
collection and are themselves clipped into shadow-
ed and unshadowed portions.

Finding object silhouettes for polygonal objects
is eased by a data structure providing links be-
tween adjacent polygons. Such a structure is de-
tailed in [6,8]. Since the silhouette is formed
solely from the contour edges and all contour
edges on a convex surface must lie on the silhou-
ette, the determination of the silhouette consists
of finding the closed loop of contour edges.

Strings of contour edges may be formed straight-

forwardly. First, all polygons must be tagged as
frontfacing or backfacing from the light source
point of view. Secondly, the neighbor polygons
for each frontfacing polygon must be checked;
where backfacing adjacent polygons are found, the
associated edge must be tagged as a silhouette
edge. Lastly, silhouette edges may be linked to-
gether by using the adjacent frontfacing polygons
to search for additional silhouette edges connect-
ed to a known silhouette vertex. For a convex
object, a single such string of edges will form
the silhouette (fig. 2).

ject, sub-objects will be treated in priority
order. Overlap tests can first determine whether
groups may interact. If so, the bounding boxes
must be passed to the next lower level of the
hierarchy. Overlap tests are then applied to the
objects within the group and finally to the sub-
objects of each object. If the bounding box of a
sub-object overlaps none of the bounding boxes
passed down through the hierarchy, it may be ig-
nored. Otherwise its silhouette is computed.

to resector several times as the collection of
blots develops. Also, sectoring based on the
bounding boxes of lower priority objects would al-
low blots which will no longer be needed to be dis-
carded.

Of course this approach depends heavily on a well-
conditioned environment (convex sub-objects). It
is not clear whether (1) the algorithm could be
easily extended to the general case and (2) whether

data generation and object modelling techniques
could be forced to always deliver such well-condi-
tioned data.

In general, the testing sequences described above
will increase in cost with the square of the number
of objects involved. However, the division of the
data into a hierarchical arrangement and the use of
sectoring when the number of blots gets large should
minimize the number of necessary tests. Again it
must be pointed out that if the light source lies
in or near the field of view from the eye position,
the space will have to be sectored for shadow de-
termination so that perspective projections may be
used. This approach counts heavily on the ease of
determining backfacing and frontfacing polygons
and on overlap tests both of which are much more
easily done after a perspective transform.

Once the shadowed polygons have been determined,
any hidden-surface algorithm may be used to gener-
ate the eyepoint image from the augmented data.
Therefore, an advantage to the two-pass approach is
that the process of defining shadows is totally in-
dependent of the later process of picture genera-
tion; the shadow process may run concurrently in
pipeline with the picture-generation process. Note
that, given two processors, there is little point
in making the shadow detection algorithm more ef-
ficient than the display algorithm if they are to
be run separately and concurrently. Also, given a
static environment and a fixed light source, sha-
dows need be computed only once for a large num-

ber of eyepoint positions. In that situation, the
efficiency of the shadow algorithm becomes much
less important.

THE THIRD CLASS: PROJECTED SHADOW POLYGONS

Shadows may be defined by the projection of edges
onto surfaces as in the first and second classes
or they may be defined by the volume of space they
encompass. The last class of shadow algorithm in-
cludes shadow volumes in the hidden-surface compu-
tation by adding their surfaces to the data. As-
suming a polygonal object, the shadow surface is
given by planes defined by contour edges and the
light source position. Each such edge defines a
polygon whose boundaries are the edge itself, the
two lines defined by the light source position and
the endpoints of the edge and the bounds of the
field of view (fig. 4). The sense of the polygon
must be maintained so that the near surface of a
shadow volume (frontfacing polygons) may be dis-
tinguished from the far surface (backfacing poly-
gons). Thus the polygons facing the light source
plus the set of projected shadow polygons for an
object define its shadow volume.

Shadow polygons may be treated just like the rest
of the data when applied to a scanning hidden-sur-

246

Having computed the silhouette of the highest
priority sub-object for which it was required,
intra-object shadow boundaries may be computed.
This can be done by clipping the polygons of
lower priority sub-objects to the silhouettes

of higher priority sub-objects. If any lower
priority sub-object is completely shadowed, it
may be tagged as such and ignored in subsequent
overlap tests. Partially shadowed sub-objects
are clipped into shadowed and unshadowed portions;
partial silhouettes are then computed based only
on the unshadowed portion. Completely unshadowed
sub-objects merely have their silhouettes calcul-
ated.

As the algorithm works its way down the priority-
ordered list of objects, a minimal set of convex
blots is built up, each blot with an associated
bounding box. As lower priority objects are
treated, they will first be clipped by the higher
priority blots then the remaining polygons will

be used to compute partial silhouettes to be
added to the set of blots. It may be useful to
include a provision to absorb a set of blots into
a single one in the case where a lower priority
sub-object is large enough to provide an envelop-
ing silhouette. However, the overhead in check-
ing for this case may well prove to outweigh the
benefits.

Where several groups of objects overlap, an ex-
tremely large set of blots is likely to have been
built up by the time lower priority groups are
treated. To avoid undue growth of computation,
the set of blots and untreated data should be
sectored so that spatially separate areas may be

treated independently. Using the information
provided by the bounding boxes, sectorization be-
comes trivial. It may even be advantageous

face algorithms; only the shading for visible sur-

faces must handled differently. Shadow polygons
are themselves invisible, thus they do not count
in the determination of visibility. However, the
depth order of shadow surfaces and visible surfaces
determines shadowing. A frontfacing shadow surface
puts anything behind it in shadow while a backfac-
ing shadow surface cancels the effect of a front-
facing one. For example, a post or column might
cast a shadow surface consisting of a single poly-
gon pair. Any surface lying between those two sha-
dow polygons would be in shadow while surfaces ly-
ing in front of or behind both polygons would be
shaded normally.

If the frontmost shadow surface is backfacing, then
everything in front of it is in shadow; if the
rearmost shadow surface is frontfacing, then ev-
erything behind it is in shadow. These cases can
occur where the eyepoint is in shadow or a surface
casts a shadow over a large part of the field of
view. Therefore, surfaces are shadowed whenever
they lie in front of a backfacing frontmost shadow
polygon or the surface depth count is such that
more frontfacing than backfacing shadow polygons
have been pierced. Shadow boundaries are formed
where a visible surface intersects a shadow poly-
gon.

Modification of a scanning hidden-surface algorithm
to handle shadow polygons involves changing only
the inner loops where shading must be calculated.
Two properties of shadow polygons may be used to
simplify computation. First, shadow polygons are
invisible. Therefore, scan lines involving only
shadow polygons may be ignored. Second, shadow
polygons formed by projection of contour edges can-
not intersect one another (as long as a single
light source is used). Therefore the depth order-
ing of such polygons is constant.

Using a scanning algorithm of the Bouknight variety

(see [4,12] for detailed views of this type of al-
gorithm) shadow polygons may be treated just as
other polygons through the y-sort and x-merge pro-
cedures. Scanning algorithms generally require
maintaining a depth-sorted list of all scan seg-
ments which would be pierced by a ray from the eye-

point through the current position on the scan line.
Shadow polygons will frequently cause quite lengthy
scan segments greatly increasing the average depth
complexity over an image. As Sutherland et al [12]
pointed out, increased depth complexity may well

severely hamper the performance of scanning algo-
rithms.

Shadow polygons, however, need be considered only

under certain circumstances during the production
of scan segments. The fact that shadow polygons
may not intersect allows profitable use of scanline
to scanline coherence. The depth ordering of sha-
dow polygons will change only when new polygons are
added or old ones deleted as the scan moves down
the image. Thus the process of rebuilding and up-
dating the depth-sorted list of shadow polygons can
be largely eliminated. The list need only be built

where object segments occur. Therefore, a scanline
with no object segments can be ignored. Since the
depth ordering doesn't change, it will only be
necessary to calculate the depth to a shadow sur-

face when it must be compared to the depth of a
visible surface.

The priority list of shadow polygons need only be

searched when the visible surface in the image

changes. Once it is discovered which shadow poly-
gons bound the currently visible surface (in depto
then only those polygons need be checked for pos-

sible intersections. Therefore, although there may

be considerable depth complexity due to shadows, a

depth complexity of two to three shadow surfaces
should be all that really affect computing time.
However, many of the images made today have an av-

erage depth complexity of less than three. Thus a
significant increase in the time needed for the
scanning process may result from the addition of

shadow polygons. However, this effect may prove
to be less significant as more highly complex en-
vironments are attempted.

A COMPARISON OF THE THREE CLASSES

Comparisons can be made with respect to the addi-

tional difficulty involved in representing shadows

using each of the above approaches. Three bases

247

for comparison are used: the additional data stor-

age required; the additional computation required;

and the difficulty of the necessary additional

software. A scanning hidden-surface algorithm is

assumed for this discussion.

At first glance only the second and third classes

of algorithm appear to require additional data

storage. The two-pass approach requires that sur-

faces be split along shadow boundaries, or at least

that shadow boundaries be included in the data;

the shadow polygon approach requires the storage

of perhaps numerous shadow polygons. However,

neither of these two classes requires the entire

scene description to be available for the hidden-

surface calculation; backfacing surfaces and data

lying outside the field of view may be discarded.

On the other hand, the first class of algorithm

requires that all object data be available in its

original form at all times so that projected shadow

boundaries may be calculated during scanout.

Therefore, the space left over for use as temporary

storage by later stages of the hidden-surface

algorithm is severely reduced. It must be con-

cluded that the two-pass approach requires least

additional storage, shadow polygons require some-

what more and calculation of shadows during scanout

requires by far the most.

Assuming that it will always be more efficient to

use only silhouettes for calculating shadow bound-

aries, the projected shadow polygon approach ap-

pears to cause the smallest increase in necessary

computation. The definition of shadow polygons is

straightforward once silhouette edges are found,

and the additional computation in the scanning pro-

cess is minimized by taking advantage of the spec-

ial properties of shadow polygons. Furthermore,

both other approaches require methods which obey

less desirable growth laws. Shadow calculation

during scanout requires additional computation to

determine which surfaces may cast shadows on each

other and then requires the calculation of the

lines separating shadowed and unshadowed areas by

operations on the object-space data. Bouknight

and Kelley reported roughly doubled computation

time to include shadows in very simple scenes. The

two-pass approach, in its turn, requires an addi-

tional solution of the hidden-surface problem.

However, since only silhouette edges need to be

considered, the first pass should be simplified.

The complexity of the additional software required

also appears to be smallest for the projected sha-

dow polygon approach. Algorithms of both the first

and second classes require significant new soft-

ware. However, it could be argued that once a

suitable hidden-surface algorithm is available for

the two-pass approach, the software for the first

pass is just a subset of that needed for the second

pass and thus no additional software is needed.

Given a situation in which a scanning hidden-sur-

face algorithm is available, it appears that the

shadow polygon approach offers the best solution.

However, starting from scratch, there is no clear-

cut best choice. Certainly there is much to be

learned by implementing an algorithm of any class.

ACKNOWLEDGEMENTS

The ideas expressed herein arose, for the most

part, in conversations with colleagues while at

the University of Utah. In particular, Ivan Suth-

erland suggested to me the notion of projected

shadow polygons and also provided valuable com-

ments on an earlier draft of this paper.

REFERENCES

[1] Appel, A., The Notion of Quantitative Invisi-

bility and the Machine Rendering of Solids, Pro-

ceedings ACM 1967 National Conference.

[2] Appel, A., Some Techniques for Shading Machine

Renderings of Solids, 1968 SJCC, AFIPS Vol. 32.

[3] Appel, A., On Calculating the Illusion of
Re-

ality, IFIP 1968.

[4] Bouknight, W. J., A Procedure for the Genera-

tion of 3-D Half-Toned Computer Graphics Present-

ations, CACM, Vol. 13, no. 6, Sept. 1970.

[5] Bouknight, W. J. and Kelley, K., An Algorithm

for Producing Half-Tone Computer Graphics Present-

ations with Shadows and Moveable Light Sources,

1970 SJCC, AFIPS Vol. 36.

[6] Bui Tuong Phong and Crow, F. C., Improved Ren-

dition of Polygonal Models of Curved Surfaces,

Proc. of the 2nd USA-Japan Computer Conf., 1975.

[7] Clark, J. H., Hierarchical Geometric Models

for Visible Surface Algorithms, CACM, Vol. 19

no. 10, Oct. 1976.

[8] Crow, F. C., The Aliasing Problem in Computer-

Synthesized Shaded Images, Dept of Computer Science

University of Utah, UTEC-CSc-76-015, March 1976.

(abridged version to appear in CACM)

[9] Newell, M. G., Newell, R. G. and Sancha, T. L.

A Solution to the Hidden-Surface Problem, Proceed-

ings of the 1972 ACM National Conference.

[10] Newell, M. G., The Utilization of Procedural

Models in Digital Image Synthesis, Department of

Computer Science, University of Utah, UTEC-CSc-

76-218, Summer 1975.

[11] Sutherland, I. E., Polygon Sorting by Sub-

division: A Solution to the Hidden-Surface Problem,

Unpublished, 1973.

[12] Sutherland, I. E., Sproull, R. F. and Schu-

maker, R. G., A Characterization of Ten Hidden-

Surface Algorithms, Computing Surveys, Vol. 6,

No. 1, March 1974.

248

