
Designer/Programmer Interaction

 Hearthstone is 19th shipped game

 Companies from large to small
 3 people to over 5k. Team size from 2 to 100

 Genres aplenty
 Educational, arcade, RTS, RPG, CCG, FPS, fighter,

sports, mobile

 Gameplay, AI, Design

Old School design loop:
• Design writes specifications doc
• Programmers go off and

implement
• Playtest
• Repeat, maybe

New School design loop:
• Systems designer writes doc
• Programmers implement the tool

content designers use
• Programmers support designers

with tool and feature changes
• Rinse and repeat until ship. Then

keep doing it

 Typical roshambo: designers, programmers, artists

 Staff is separated by career tracks, game features are
not

 Increasingly complex games require more and more
tight coupling of design and engineering

 These two groups can be especially tough to
harmonize

Basic differences
• Process differences
• Work motivations/goals
• Measure of success

Working together
• Establishing Connection
• Communication
• Ongoing techniques

Bridge Methods
• Technical Designers
• Dual class CD

Free form
Collaborative

Largely discovered
Very situational

Structured
Abstract

Systematic
Typically more

isolated

Design Programming

Design

FUN
A consistent player

contract
Simplicity

Programming

Performance
Scalability

Maintenance
Simplicity

Game for Everyone

Keep it Deep

Fast Doesn’t Mean Sloppy

	

You	can	spend	two	weeks	to	do	it	right,	or	one	week	to	do	it	fast	and	then	two	more	weeks	fixing	the	bugs	

over	the	next	six	months.	Spend	the	two	weeks.	

“Hack”	is	not	a	dirty	word.	A	hack	is	a	robust	solution	constructed	with	very	little	code.	It	might	not	be	as	fast	

as	we	need	it	some	day.	It	might	not	deliver	all	the	“would	be	nice”	features.	However,	what	a	hack	does,	it	

does	well.	The	whole	point	is	to	not	support	it	again	until	some	time	in	the	future,	so	if	it’s	not	robust	or	does	

not	do	what	it’s	supposed	to	do	every	time	then	you’ve	defeated	the	purpose	of	taking	the	expedient	path.	

	

Keep It Simple

Know How It Broke

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Sometimes a bug seems to magically go away. This doesn’t mean

it actually did. If we don’t know how it happened in the first

place then we can’t be sure it won’t come back, or that we have

the proper solution.

If a random change fixes the bug, revert the change until you

know why it fixes the problem.

If a bug magically goes away, trace the previous revision until

you know what should have been done to fix the bug, then

compare that to what was actually done and see if it was the

right fix.

It Better Work	

	

Compile it.

Run it.

Use it.

Don’t give it to someone else unless you’re sure it compiles, runs, and performs the way it’s

expected to perform. If your recipient doesn’t know your system then committing incomplete or

incorrect code wastes time as they try to debug what you should have already debugged.	

Leave No Tracks

Everything we write should look like one person wrote it all.

Play the Game You’re Making

	

	

We make games we want to play, and we play the games we make. We build a game to be as fun

as it can be for us, and we assume anyone else like us will like the game the way we’ve made it.

Sometimes our tasks seem to bury us, but we have to use the product to engineer it properly,

and to give feedback to the designers for things we could engineer better. Always make time to

play the game regardless of your workload.

	

Use the Right Tool

	

Every tool has things it does well. Every tool can be used wrong.

Use the right programming language, the right algorithm, the right data structure, the right

amount of customizability, the right amount of flexibility, the right balance of speed

optimization versus memory optimization.

Know who and what you’re supporting. Know your minimum requirements. Know how long you

expect to use the system. All of these things help determine the right tool.

Design

FUN
A consistent player

contract
Simplicity

Programming

Performance
Scalability

Maintenance
Simplicity

Pre-Prototype
• Get everyone on board and on same page
• Mixed media
• Explore boundaries of design space
• Trying to find exceptions creates clarity

Prototype
• Pushback on abstraction
• Now have more info about

performance, etc
• Watch for overengineering and

possible trust fails

 Vocabulary
 Consistency is king

 Naming systems
 Allowing for flexibility at definition

 Be EXPICIT
 Priorities:

 Must Have/Would Be Nice
 Post Ship

 Estimates
 Don’t give snap estimates
 Ranges show certainty

 Meetings
 Work chunk size
 Social setting

 Ongoing communiqués
 Email/IM/phone/in person
 Times of day, “focus time”

 Feedback and suggestions
 Foster an “open for ideas” zone
 What are you trying to fix?

 Documentation
 Design docs

 Process

 Content/Scripts

 Bug reports
 Everything is broke,

Nothing Works

 Work flow
 Personal preferences
 Pet peeves

 Discovery
 Big changes
 Reprioritization

 Crunch

Trust
 The “contract”

 Needs twice the mentoring/management.

 Can suffer from “green programmer” problems
 Unapproved checkins, hacks, easter eggs
 Poorly optimized code or potentially exploitable

 Take care with overlapping influence

 Should not be the main designer. Dual nature makes them
not focus as shrewdly on player’s needs

 ABSOLUTELY THE FUTURE OF GAME DEVELOPMENT
 sortof

 Knows enough to push back on both sides, and
provide mediation

 Ownership

 Need to manage both sides

 Programmers and designers are very different people

 Best systems come from melding design and engineering

 Build a strong developer relationship
 Communication is the heart

 Trust is the soul

 Cross discipline staff can be valuable, if…

 Remember, we all want the same thing, to make something
great

Brian.Schwab@gmail.com

