
Introduction to DirectX Raytracing:

Overview and Introduction to

Ray Tracing Shaders

Chris Wyman, NVIDIA

Twitter: @_cwyman_

E-mail: chris.wyman@acm.org

More information: http://intro-to-dxr.cwyman.org

Next Steps

• Pete gave a nice overview of basics:

– What is ray tracing? Why use ray tracing?

• Now we want to ask:

– How do I do it?

1

Next Steps

• Pete gave a nice overview of basics:

– What is ray tracing? Why use ray tracing?

• Now we want to ask:

– How do I do it?

• Of course, you could start from scratch:

– Write a CPU ray tracer; plenty of resources

– Write a GPU ray tracer; can be tricky & ugly

2

Next Steps

• Pete gave a nice overview of basics:

– What is ray tracing? Why use ray tracing?

• Now we want to ask:

– How do I do it?

• Of course, you could start from scratch:

– Write a CPU ray tracer; plenty of resources

– Write a GPU ray tracer; can be tricky & ugly

• Use vendor-specific APIs

– Hide ugly, low-level implementation details

– Poor scaling cross-vendor, interact w / raster

3

Use Standardized API: DirectX Raytracing

• Of course, that’s why you are here:

– Today’s goal: show how to use DX Raytracing

4

Use Standardized API: DirectX Raytracing

• Of course, that’s why you are here:

– Today’s goal: show how to use DX Raytracing

• Part of a widely-used API, DirectX

• Shares resources:

– No data copying between raster and ray tracing

• Works across multiple vendors, either:

– Via vendor-provided software or hardware

– Via standardized compatibility layer (on DX12 GPUs)

5

Overview: Modern Graphics APIs

6

Icons: CC-Attribution-3.0, by Matthias Smit, Mahmure Alp, and Georgiana Ionescu

• Two main parts:

Scene & game data

Parallel rendering

Resource management

Spawn parallel GPU work

High-level rendering algorithms
GPU pass management

Overview: Modern Graphics APIs

7

Icons: CC-Attribution-3.0, by Matthias Smit, Mahmure Alp, and Georgiana Ionescu

• Two main parts:

– GPU device code (aka “shaders”):

• Includes parallel rendering and other parallel tasks

• Simplified; writing parallel code looks like serial code

Scene & game data

Parallel rendering

Resource management

Spawn parallel GPU work

High-level rendering algorithms
GPU pass management

Runs here

Overview: Modern Graphics APIs

8

Icons: CC-Attribution-3.0, by Matthias Smit, Mahmure Alp, and Georgiana Ionescu

• Two main parts:

– GPU device code (aka “shaders”):

• Includes parallel rendering and other parallel tasks

• Simplified; writing parallel code looks like serial code

– CPU host code (often “DirectX API”):

• Manages memory resources (disk → CPU ↔ GPU)

• Sets up, controls, manages, spawns GPU tasks

• Defines shared graphics data structures (like ray accelerations structures)

• Allows higher-level graphics algorithms requiring multiple passes

Scene & game data

Parallel rendering

Resource management

Spawn parallel GPU work

High-level rendering algorithms
GPU pass management

Controls this space

Overview: Modern Graphics APIs

9

Icons: CC-Attribution-3.0, by Matthias Smit, Mahmure Alp, and Georgiana Ionescu

• Two main parts:

– GPU device code (aka “shaders”):

• Includes parallel rendering and other parallel tasks

• Simplified; writing parallel code looks like serial code

– CPU host code (often “DirectX API”):

• Manages memory resources (disk → CPU ↔ GPU)

• Sets up, controls, manages, spawns GPU tasks

• Defines shared graphics data structures (like ray accelerations structures)

• Allows higher-level graphics algorithms requiring multiple passes

Scene & game data

Parallel rendering

Resource management

Spawn parallel GPU work

High-level rendering algorithms
GPU pass management

This rest of this talk focuses on

DirectX Raytracing shaders!

• Two main parts:

– GPU device code (aka “shaders”):

• Includes parallel rendering and other parallel tasks

• Simplified; writing parallel code looks like serial code

– CPU host code (often “DirectX API”):

• Manages memory resources (disk → CPU ↔ GPU)

• Sets up, controls, manages, spawns GPU tasks

• Defines shared graphics data structures (like ray accelerations structures)

• Allows higher-level graphics algorithms requiring multiple passes

Overview: Modern Graphics APIs

10

Icons: CC-Attribution-3.0, by Matthias Smit, Mahmure Alp, and Georgiana Ionescu

Scene & game data

Parallel rendering

Resource management

Spawn parallel GPU work

High-level rendering algorithms
GPU pass management

Shawn will focus on

host code later this

morning

What Are Shaders?

• Developer controlled pieces of the graphics pipeline

– The parts not automatically managed by the graphics API, driver, or hardware

– Where you get to write your GPU code

11

What Are Shaders?

• Developer controlled pieces of the graphics pipeline

– The parts not automatically managed by the graphics API, driver, or hardware

– Where you get to write your GPU code

• Typically written in a C-like high-level language

– In DirectX, shaders are written in the High Level Shading Language (HLSL)

12

What Are Shaders?

• Developer controlled pieces of the graphics pipeline

– The parts not automatically managed by the graphics API, driver, or hardware

– Where you get to write your GPU code

• Typically written in a C-like high-level language

– In DirectX, shaders are written in the High Level Shading Language (HLSL)

• Individual shaders can represent instructions for complete GPU tasks

– E.g., DirectX’s compute shaders

13

What Are Shaders?

• Developer controlled pieces of the graphics pipeline

– The parts not automatically managed by the graphics API, driver, or hardware

– Where you get to write your GPU code

• Typically written in a C-like high-level language

– In DirectX, shaders are written in the High Level Shading Language (HLSL)

• Individual shaders can represent instructions for complete GPU tasks

– E.g., DirectX’s compute shaders

• Or they can represent a subset of a more complex pipeline

– E.g., transforming geometry to cover the right pixels in DirectX’s vertex shaders

14

DirectX Rasterization Pipeline

• What do shaders do in today’s widely-used rasterization pipeline?

15

DirectX Rasterization Pipeline

• What do shaders do in today’s widely-used rasterization pipeline?

• Run a shader, the vertex shader, on each vertex sent to the graphics card

– This usually transforms it to the right location relative to the camera

16

Per-Vertex

Vertex
Shader

DirectX Rasterization Pipeline

• What do shaders do in today’s widely-used rasterization pipeline?

• Group vertices into triangles, then run tessellation shaders to allow GPU subdivision of geometry

– Includes 3 shaders with different goals, the hull shader, tessellator shader, and domain shader

17

Per-Vertex Tessellation Shading Stages

Vertex
Shader

Hull
Shader

Tessellator
Shader

Domain
Shader

DirectX Rasterization Pipeline

• What do shaders do in today’s widely-used rasterization pipeline?

• Run a shader, the geometry shader, on each tessellated triangle

– Allows computations that need to occur on a complete triangle, e.g., finding the geometric surface normal

18

Per-Vertex Per-PrimitiveTessellation Shading Stages

Vertex
Shader

Hull
Shader

Tessellator
Shader

Domain
Shader

Geometry
Shader

DirectX Rasterization Pipeline

• What do shaders do in today’s widely-used rasterization pipeline?

• Rasterize our triangles (i.e., determine the pixels they cover)

– Done by special-purpose hardware rather than user-software

– Only a few developer controllable settings

19

Per-Vertex Per-PrimitiveTessellation Shading Stages

Vertex
Shader

Hull
Shader

Tessellator
Shader

Domain
Shader

Geometry
Shader

Rasterizer

DirectX Rasterization Pipeline

• What do shaders do in today’s widely-used rasterization pipeline?

• Run a shader, the pixel shader (or fragment shader), on each pixel generated by rasterization

– This usually computes the surface’s color

20

Per-PixelPer-Vertex Per-PrimitiveTessellation Shading Stages

Vertex
Shader

Hull
Shader

Tessellator
Shader

Domain
Shader

Geometry
Shader

Rasterizer
Fragment

Shader

DirectX Rasterization Pipeline

• What do shaders do in today’s widely-used rasterization pipeline?

• Merge each pixel into the final output image (e.g., doing blending)

– Usually done with special-purpose hardware

– Hides optimizations like memory compression and converting image formats

21

Per-PixelPer-Vertex Per-PrimitiveTessellation Shading Stages

Vertex
Shader

Hull
Shader

Tessellator
Shader

Domain
Shader

Geometry
Shader

Rasterizer
Fragment

Shader
Output
(ROP)

DirectX Rasterization Pipeline

• Squint a bit, and that pipeline looks like:

22

Shader to compute color
for each rasterized pixel

Shader(s) to transform
vertices into displayable

triangles
Rasterizer

Output
(ROP)

In
p

u
t:

 S
e

t
o

f
T

ri
a

n
g

le
s

O
u

tp
u

t:

F

in
a
l
Im

a
g

e

DirectX Ray Tracing Pipeline

• So what might a simplified ray tracing pipeline look like?

23

DirectX Ray Tracing Pipeline

• So what might a simplified ray tracing pipeline look like?

24

In
p

u
t:

 S
e

t
o

f
P

ix
e

ls

O
u

tp
u

t:

F

in
a
l
Im

a
g

e

Take input pixel position,
generate ray(s)

Intersect Rays
With Scene

Shade hit points Output

Please note:

A very simplified representation

DirectX Ray Tracing Pipeline

• So what might a simplified ray tracing pipeline look like?

• One advantage of ray tracing:

– Algorithmically, much easier to add recursion

25

In
p

u
t:

 S
e

t
o

f
P

ix
e

ls

O
u

tp
u

t:

F

in
a
l
Im

a
g

e

Take input pixel position,
generate ray(s)

Intersect Rays
With Scene

Shade hit points;
(Optional) generate

recursive ray(s)
Output

Please note:

A very simplified representation

DirectX Ray Tracing Pipeline

• Pipeline is split into five new shaders:

26

DirectX Ray Tracing Pipeline

• Pipeline is split into five new shaders:

– A ray generation shader defines how to start ray tracing

27

Runs once per algorithm (or per pass)

DirectX Ray Tracing Pipeline

• Pipeline is split into five new shaders:

– A ray generation shader defines how to start ray tracing

– Intersection shader(s) define how rays intersect geometry

28

Runs once per algorithm (or per pass)

Defines geometric shapes, widely reusable

DirectX Ray Tracing Pipeline

• Pipeline is split into five new shaders:

– A ray generation shader defines how to start ray tracing

– Intersection shader(s) define how rays intersect geometry

– Miss shader(s) define behavior when rays miss geometry

29

Runs once per algorithm (or per pass)

Defines geometric shapes, widely reusable

DirectX Ray Tracing Pipeline

• Pipeline is split into five new shaders:

– A ray generation shader defines how to start ray tracing

– Intersection shader(s) define how rays intersect geometry

– Miss shader(s) define behavior when rays miss geometry

– Closest-hit shader(s) run once per ray (e.g., to shade the final hit)

30

Runs once per algorithm (or per pass)

Defines geometric shapes, widely reusable

DirectX Ray Tracing Pipeline

• Pipeline is split into five new shaders:

– A ray generation shader defines how to start ray tracing

– Intersection shader(s) define how rays intersect geometry

– Miss shader(s) define behavior when rays miss geometry

– Closest-hit shader(s) run once per ray (e.g., to shade the final hit)

– Any-hit1 shader(s) run once per hit (e.g., to determine transparency)

31
1Note: Read spec for more advanced usage, since meaning of “any” may not match your expectations

Runs once per algorithm (or per pass)

Defines geometric shapes, widely reusable

DirectX Ray Tracing Pipeline

• Pipeline is split into five new shaders:

– A ray generation shader defines how to start ray tracing

– Intersection shader(s) define how rays intersect geometry

– Miss shader(s) define behavior when rays miss geometry

– Closest-hit shader(s) run once per ray (e.g., to shade the final hit)

– Any-hit1 shader(s) run once per hit (e.g., to determine transparency)

32
1Note: Read spec for more advanced usage, since meaning of “any” may not match your expectations

Runs once per algorithm (or per pass)

Defines geometric shapes, widely reusable

Defines behavior of ray(s)

Different between shadow, primary, indirect rays

DirectX Ray Tracing Pipeline

• Pipeline is split into five new shaders:

– A ray generation shader defines how to start ray tracing

– Intersection shader(s) define how rays intersect geometry

– Miss shader(s) define behavior when rays miss geometry

– Closest-hit shader(s) run once per ray (e.g., to shade the final hit)

– Any-hit1 shader(s) run once per hit (e.g., to determine transparency)

• An new, unrelated sixth shader:

– A callable shader can be launched from another shader stage

33
1Note: Read spec for more advanced usage, since meaning of “any” may not match your expectations

Runs once per algorithm (or per pass)

Defines geometric shapes, widely reusable

Defines behavior of ray(s)

Different between shadow, primary, indirect rays

Abstraction allows this; explicitly expose it

(Due to time limitations, see DXR spec for further details)

Ray Generation Shader

• Write code to:

– Specify what ray(s) to trace for each pixel

• In particular:

– Launch ray(s) by calling new HLSL TraceRay() intrinsic

– Accumulate ray color into image after ray tracing finishes

34

In
p

u
t:

 S
e

t
o

f
P

ix
e

ls

Output: Final Image

Very Abstractly: “Ray Tracing” Happens

Ray
Generation

Shader

TraceRay()
HLSL Call

Shade rays

Color from ray returned to the ray generation shader

M
o

re
 s

p
e
c
ific

a
lly

In
p

u
t:

 S
e

t
o

f
P

ix
e

ls

Output: Final Image

Very Abstractly: “Ray Tracing” Happens

Ray
Generation

Shader

TraceRay()
HLSL Call

Shade rays

What Happens When Tracing a Ray?

35Traversal Loop

Ray Shading

TraceRay()
Called

Return From
TraceRay()

• Let’s zoom in

– To look at what happens during ray tracing

What Happens When Tracing a Ray?

36Traversal Loop

Ray Shading

TraceRay()
Called

Return From
TraceRay()

• A good mental model:

– First, we traverse our scene to find what geometry our ray hits

What Happens When Tracing a Ray?

37Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• A good mental model:

– First, we traverse our scene to find what geometry our ray hits

– When we find the closest hit, shade at that point using the closest-hit shader

• This shader is a ray property; in theory, each ray can have a different closest-hit shader.

What Happens When Tracing a Ray?

38Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• If our ray misses all geometry, the miss shader gets invoked

– Can consider this a shading routine that runs when you see the background

• Again, the miss shader is specified per-ray

Miss
Shader

How Does Scene Traversal Happen?

39Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• Traverse the scene acceleration structure to ignore trivially-rejected geometry

– An opaque process, with a few developer controls

– Allows vendor-specific algorithms and updates without changing render code

Miss
Shader

Acceleration
Traversal

How Does Scene Traversal Happen?

40Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• If all geometry trivially ignored, ray traversal ends

Miss
Shader

Acceleration
Traversal

No potential hits

How Does Scene Traversal Happen?

41Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• If all geometry trivially ignored, ray traversal ends

• For potential intersections, an intersection shader is invoked

– Specific to a particular geometry type (e.g., one shader for spheres, one for Bezier patches)

– DirectX includes a default, optimized intersection for triangles

Miss
Shader

Acceleration
Traversal

No potential hits

Intersection
Shader

How Does Scene Traversal Happen?

42Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• No shader-detected intersection? Detected intersection not the closest hit so far?

– Continue traversing through our scene

Miss
Shader

Acceleration
Traversal

No potential hits

Intersection
Shader

Closest
Hit?

No intersection

Not closest

How Does Scene Traversal Happen?

43Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• Detected hit might be transparent? Run the any-hit shader1

– A ray-specific shader, specified in conjunction with the closest-hit shader

– Shader can call IgnoreHit() to continue traversing, ignoring this surface

Miss
Shader

Acceleration
Traversal

No potential hits

Intersection
Shader

Closest
Hit?

No intersection

Not closest

Any-Hit
Shader1

This is closest hit

Is
Opaque?

Ignore hit
(transparent)

Accept hit

Yes

No

1Please note: I did not name this shader!

How Does Scene Traversal Happen?

44Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• Update the closest hit point with newly discovered hit

• Continue traversing to look for closer intersections

Miss
Shader

Acceleration
Traversal

No potential hits

Intersection
Shader

Closest
Hit?

No intersection

Not closest

Any-Hit
Shader1

This is closest hit

Is
Opaque?

Ignore hit
(transparent)

Accept hit

Yes

Update
Closest
Hit Data

No

1Please note: I did not name this shader!

Ray Traversal Pipeline

45Traversal Loop

Ray Shading

Closest-Hit
ShaderTraceRay()

Called
Return From
TraceRay()

• Continue traversing scene until no closer hits discovered

– Had a valid hit along the ray? Shade via the closest-hit shader

– No valid hits? Shade via the miss shader

Miss
Shader

Acceleration
Traversal

No (additional) potential hits

Intersection
Shader

Closest
Hit?

No intersection

Not closest

Any-Hit
Shader1

This is closest hit

Is
Opaque?

Ignore hit
(transparent)

Accept hit

Yes

Update
Closest
Hit Data

Have
Hit?

Yes

No

No

1Please note: I did not name this shader!

Summary: DirectX Ray Tracing Shaders

• Control where your rays start? See the ray generation shader

46

Summary: DirectX Ray Tracing Shaders

• Control where your rays start? See the ray generation shader

• Control when your rays intersect geometry? See the geometry’s intersection shader

47

?

?

Summary: DirectX Ray Tracing Shaders

• Control where your rays start? See the ray generation shader

• Control when your rays intersect geometry? See the geometry’s intersection shader

• Control what happens when rays miss? See your ray’s miss shader

48

Summary: DirectX Ray Tracing Shaders

• Control where your rays start? See the ray generation shader

• Control when your rays intersect geometry? See the geometry’s intersection shader

• Control what happens when rays miss? See your ray’s miss shader

• Control how to shade your final hit points? See your ray’s closest-hit shader

49

Summary: DirectX Ray Tracing Shaders

• Control where your rays start? See the ray generation shader

• Control when your rays intersect geometry? See the geometry’s intersection shader

• Control what happens when rays miss? See your ray’s miss shader

• Control how to shade your final hit points? See your ray’s closest-hit shader

• Control how transparency behaves? See your ray’s any-hit shader

50

What Goes Into a DirectX Ray Tracing Shader?

More information: http://intro-to-dxr.cwyman.org

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

52

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

• Shader entry points can be arbitrarily named

53

[shader(“raygeneration”)]

void PinholeCameraRayGen() // No parameters required

{ ... <Place code here> ... }

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

• Shader entry points can be arbitrarily named

• Type specified by HLSL attribute: [shader(“shader-type”)]

– Remember the ray generation shader is where ray tracing starts

54

[shader(“raygeneration”)]

void PinholeCameraRayGen() // No parameters required

{ ... <Place code here> ... }

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

• Shader entry points can be arbitrarily named

• Type specified by HLSL attribute: [shader(“shader-type”)]

– Remember the ray generation shader is where ray tracing starts

• Starting other shader types look like this:

55

[shader(“raygeneration”)]

void PinholeCameraRayGen() // No parameters required

{ ... <Place code here> ... }

[shader(“intersection”)]

void PrimitiveIntersection () // No parameters required

{ ... <Place code here> ... }

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

• Shader entry points can be arbitrarily named

• Type specified by HLSL attribute: [shader(“shader-type”)]

– Remember the ray generation shader is where ray tracing starts

• Starting other shader types look like this:

56

[shader(“raygeneration”)]

void PinholeCameraRayGen() // No parameters required

{ ... <Place code here> ... }

[shader(“miss”)]

void RayMiss(inout RayPayload data) // User-defined struct

{ ... <Place code here> ... }

[shader(“intersection”)]

void PrimitiveIntersection () // No parameters required

{ ... <Place code here> ... }

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

• Shader entry points can be arbitrarily named

• Type specified by HLSL attribute: [shader(“shader-type”)]

– Remember the ray generation shader is where ray tracing starts

• Starting other shader types look like this:

57

[shader(“raygeneration”)]

void PinholeCameraRayGen() // No parameters required

{ ... <Place code here> ... }

[shader(“miss”)]

void RayMiss(inout RayPayload data) // User-defined struct

{ ... <Place code here> ... }

[shader(“anyhit”)]

void RayAnyHit(inout RayPayload data,

IntersectAttribs attribs)

{ ... <Place code here> ... }

[shader(“intersection”)]

void PrimitiveIntersection () // No parameters required

{ ... <Place code here> ... }

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

• Shader entry points can be arbitrarily named

• Type specified by HLSL attribute: [shader(“shader-type”)]

– Remember the ray generation shader is where ray tracing starts

• Starting other shader types look like this:

58

[shader(“raygeneration”)]

void PinholeCameraRayGen() // No parameters required

{ ... <Place code here> ... }

[shader(“miss”)]

void RayMiss(inout RayPayload data) // User-defined struct

{ ... <Place code here> ... }

[shader(“anyhit”)]

void RayAnyHit(inout RayPayload data,

IntersectAttribs attribs)

{ ... <Place code here> ... }

[shader(“closesthit”)]

void RayClosestHit(inout RayPayload data,

IntersectAttribs attribs)

{ ... <Place code here> ... }

[shader(“intersection”)]

void PrimitiveIntersection () // No parameters required

{ ... <Place code here> ... }

[shader(“anyhit”)]

void RayAnyHit(inout RayPayload data,

IntersectAttribs attribs)

{ ... <Place code here> ... }

[shader(“closesthit”)]

void RayClosestHit(inout RayPayload data,

IntersectAttribs attribs)

{ ... <Place code here> ... }

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

• Shader entry points can be arbitrarily named

• Type specified by HLSL attribute: [shader(“shader-type”)]

– Remember the ray generation shader is where ray tracing starts

• Starting other shader types look like this:

– RayPayload is a user-defined (and arbitrarily named structure)

59

[shader(“raygeneration”)]

void PinholeCameraRayGen() // No parameters required

{ ... <Place code here> ... }

[shader(“miss”)]

void RayMiss(inout RayPayload data) // User-defined struct

{ ... <Place code here> ... }

[shader(“intersection”)]

void PrimitiveIntersection () // No parameters required

{ ... <Place code here> ... }

[shader(“anyhit”)]

void RayAnyHit(inout RayPayload data,

IntersectAttribs attribs)

{ ... <Place code here> ... }

[shader(“closesthit”)]

void RayClosestHit(inout RayPayload data,

IntersectAttribs attribs)

{ ... <Place code here> ... }

Starting a DXR Shader

• As any program, need an entry point where execution starts

– Think main() in C/C++

• Shader entry points can be arbitrarily named

• Type specified by HLSL attribute: [shader(“shader-type”)]

– Remember the ray generation shader is where ray tracing starts

• Starting other shader types look like this:

– RayPayload is a user-defined (and arbitrarily named structure)

– IntersectAttribs has data reported on hits (by intersection shader)

60

[shader(“raygeneration”)]

void PinholeCameraRayGen() // No parameters required

{ ... <Place code here> ... }

[shader(“miss”)]

void RayMiss(inout RayPayload data) // User-defined struct

{ ... <Place code here> ... }

[shader(“intersection”)]

void PrimitiveIntersection () // No parameters required

{ ... <Place code here> ... }

What is a Ray Payload?

• Ray payload is an arbitrary user-defined, user-named structure

– Contains intermediate data needed during ray tracing

61

struct SimpleRayPayload

{

float3 rayColor;

};

What is a Ray Payload?

• Ray payload is an arbitrary user-defined, user-named structure

– Contains intermediate data needed during ray tracing

62

struct SimpleRayPayload

{

float3 rayColor;

};

Not familiar with HLSL?

Built-in types include scalar types: bool, int, uint, float

Also vectors of up to 4 components: bool1, int2, uint3, float4

And matrices up to 4x4 size: uint1x4, float2x2, int3x2, float4x4

What is a Ray Payload?

• Ray payload is an arbitrary user-defined, user-named structure

– Contains intermediate data needed during ray tracing

– Note: Keep ray payload as small as possible

• Large payloads will reduce performance; spill registers into memory

63

struct SimpleRayPayload

{

float3 rayColor;

};

Not familiar with HLSL?

Built-in types include scalar types: bool, int, uint, float

Also vectors of up to 4 components: bool1, int2, uint3, float4

And matrices up to 4x4 size: uint1x4, float2x2, int3x2, float4x4

What is a Ray Payload?

• Ray payload is an arbitrary user-defined, user-named structure

– Contains intermediate data needed during ray tracing

– Note: Keep ray payload as small as possible

• Large payloads will reduce performance; spill registers into memory

• A simple ray might look like this:

– Sets color to blue when the ray misses

– Sets color to red when the ray hits an object

64

struct SimpleRayPayload

{

float3 rayColor;

};

[shader(“miss”)]

void RayMiss(inout SimpleRayPayload data)

{

data.rayColor = float3(0, 0, 1);

}

[shader(“closesthit”)]

void RayClosestHit(inout SimpleRayPayload data,

IntersectAttribs attribs)

{

data.rayColor = float3(1, 0, 0);

}

What are the Intersection Attributes?

• Communications intersection information needed for shading

– E.g., how do you look up textures for your primitive?

65

What are the Intersection Attributes?

• Communications intersection information needed for shading

– E.g., how do you look up textures for your primitive?

• Specific to each intersection type

– One structure for triangles, one for spheres, one for Bezier patches

66

What are the Intersection Attributes?

• Communications intersection information needed for shading

– E.g., how do you look up textures for your primitive?

• Specific to each intersection type

– One structure for triangles, one for spheres, one for Bezier patches

– DirectX provides a built-in for the fixed function triangle intersector

67

struct BuiltinIntersectionAttribs

{ // Barycentric coordinates of hit in

float2 barycentrics; // the triangle are: (1-x-y, x, y)

}

What are the Intersection Attributes?

• Communications intersection information needed for shading

– E.g., how do you look up textures for your primitive?

• Specific to each intersection type

– One structure for triangles, one for spheres, one for Bezier patches

– DirectX provides a built-in for the fixed function triangle intersector

– Could imagine custom intersection attribute structures like:

68

struct BuiltinIntersectionAttribs

{ // Barycentric coordinates of hit in

float2 barycentrics; // the triangle are: (1-x-y, x, y)

}

struct PossibleSphereAttribs

{ // Giving (theta,phi) of the hit on

float2 thetaPhi; // the sphere (thetaPhi.x, thetaPhi.y)

}

struct PossibleVolumeAttribs

{ // Doing volumetric ray marching? Maybe

float3 vox; // return voxel coord: (vox.x, vox.y, vox.z)

}

What are the Intersection Attributes?

• Communications intersection information needed for shading

– E.g., how do you look up textures for your primitive?

• Specific to each intersection type

– One structure for triangles, one for spheres, one for Bezier patches

– DirectX provides a built-in for the fixed function triangle intersector

– Could imagine custom intersection attribute structures like:

• Limited attribute structure size: max 32 bytes

69

struct BuiltinIntersectionAttribs

{ // Barycentric coordinates of hit in

float2 barycentrics; // the triangle are: (1-x-y, x, y)

}

struct PossibleSphereAttribs

{ // Giving (theta,phi) of the hit on

float2 thetaPhi; // the sphere (thetaPhi.x, thetaPhi.y)

}

struct PossibleVolumeAttribs

{ // Doing volumetric ray marching? Maybe

float3 vox; // return voxel coord: (vox.x, vox.y, vox.z)

}

A Simple Example

70

A Simple Example

71

• Besides our shader, what data is needed on the GPU to shoot rays?

A Simple Example

72

// A standard DirectX unordered access view (a.k.a., “read-write texture”)

RWTexture<float4> outTex;

• Besides our shader, what data is needed on the GPU to shoot rays?

• We need somewhere to write our output

A Simple Example

73

// A standard DirectX unordered access view (a.k.a., “read-write texture”)

RWTexture<float4> outTex;

// An HLSL “constant buffer”, to be populated from your host C++ code

cbuffer RayGenData {

float3 wsCamPos; // World space camera position

float3 wsCamU, wsCamV, wsCamW; // Camera right, up, and forward vectors

};

• Besides our shader, what data is needed on the GPU to shoot rays?

• We need somewhere to write our output

• Where are we looking? We need camera data

A Simple Example

74

// A standard DirectX unordered access view (a.k.a., “read-write texture”)

RWTexture<float4> outTex;

// An HLSL “constant buffer”, to be populated from your host C++ code

cbuffer RayGenData {

float3 wsCamPos; // World space camera position

float3 wsCamU, wsCamV, wsCamW; // Camera right, up, and forward vectors

};

// Our scene’s ray acceleration structure, setup via the C++ DirectX API

RaytracingAccelerationStructure sceneAccelStruct;

• Besides our shader, what data is needed on the GPU to shoot rays?

• We need somewhere to write our output

• Where are we looking? We need camera data

• Need to know about our scene geometry

A Simple Example

75

// A standard DirectX unordered access view (a.k.a., “read-write texture”)

RWTexture<float4> outTex;

// An HLSL “constant buffer”, to be populated from your host C++ code

cbuffer RayGenData {

float3 wsCamPos; // World space camera position

float3 wsCamU, wsCamV, wsCamW; // Camera right, up, and forward vectors

};

// Our scene’s ray acceleration structure, setup via the C++ DirectX API

RaytracingAccelerationStructure sceneAccelStruct;

• Besides our shader, what data is needed on the GPU to shoot rays?

• We need somewhere to write our output

• Where are we looking? We need camera data

• Need to know about our scene geometry

• Also need information on how to shade the scene

– More complex topic

– Depends on your program’s or engine’s material format

– Depends on your shading models

– Leave for later, see full tutorial code for examples

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

A Simple Example – Code

76

What pixel are we currently computing?

How many rays, in total, are we generating?

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

...

}

CPU → GPU data declarations

A Simple Example – Code

77

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

...

}

Find pixel center in [0..1] x [0..1]

Compute normalized device coordinate (as in raster)

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

Convert NDC into pixel’s ray direction (using camera inputs)

A Simple Example – Code

78

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

Collectively: Turn pixel ID into a ray direction

A Simple Example – Code

79

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

Setup our ray

A Simple Example – Code

80

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

RayDesc is a new HLSL built-in type:

struct RayDesc {

float3 Origin; // Where the ray starts

float TMin; // Min distance for a valid hit

float3 Direction; // Direction the ray goes

float TMax; // Max distance for a valid hit

};

A Simple Example – Code

81

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

...

}

Setup our ray’s payload

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

A Simple Example – Code

82

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

Trace our ray

A Simple Example – Code

83

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

A new intrinsic function in HLSL

Can call from ray generation, miss, and closest-hit shaders

A Simple Example – Code

84

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

Our scene acceleration structure

A Simple Example – Code

85

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

Special traversal behavior for this ray? (Here: No)

A Simple Example – Code

86

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

Instance mask; 0xFF → test all geometry

This allows us to ignore some geometry via a mask

A Simple Example – Code

87

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

Which intersection, any-hit, closest-hit, and miss shadersto use?

Known from C++ API setup & total number of shaders. This case: 0, 1, 0

A Simple Example – Code

88

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

What ray are we shooting?

A Simple Example – Code

89

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

...

}

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

What is the ray payload? Stores intermediate, per-ray data

A Simple Example – Code

90

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Write ray query result into our output texture

RWTexture<float4> outTex; // Output texture

cbuffer RayGenData { // World-space camera data

float3 wsCamPos;

float3 wsCamU, wsCamV, wsCamW;

};

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload {

float3 color;

};

RWTexture<float4> outTex;

cbuffer RayGenData { float3 wsCamPos, wsCamU, wsCamV, wsCamW; };

RaytracingAccelerationStructure sceneAccelStruct;

struct SimpleRayPayload { float3 color; };

[shader(“raygeneration”)]

void PinholeCamera() {

uint2 curPixel = DispatchRaysIndex().xy;

uint2 totalPixels = DispatchRaysDimensions().xy;

float2 pixelCenter = (curPixel + float2(0.5,0.5)) / totalPixels;

float2 ndc = float2(2,-2) * pixelCenter + float2(-1,1);

float3 pixelRayDir = ndc.x * wsCamU + ndc.y * wsCamV + wsCamZ;

RayDesc ray;

ray.Origin = wsCamPos;

ray.Direction = normalize(pixelRayDir);

ray.TMin = 0.0f;

ray.TMax = 1e+38f;

SimpleRayPayload payload = { float3(0, 0, 0) };

TraceRay(sceneAccelStruct, RAY_FLAG_NONE, 0xFF,

HIT_GROUP, NUM_HIT_GROUPS, MISS_SHADER,

ray, payload);

outTex[curPixel] = float4(payload.color, 1.0f);

}

Combine With Simple Ray Type

91

[shader(“miss”)]

void RayMiss(inout SimpleRayPayload data)

{

data.color = float3(0, 0, 1);

}

[shader(“closesthit”)]

void RayClosestHit(inout SimpleRayPayload data,

BuiltinIntersectionAttribs attribs)

{

data.color = float3(1, 0, 0);

}

• Now you have a complete DirectX Raytracing shader

– (Both intersection shader and any-hit shader are optional)

• Shoots rays from app-specified camera

• Returns red if rays hit geometry, blue on background

What Can DXR HLSL Shaders Do?

92

What Can DXR HLSL Shaders Do?

• All the standard HLSL data types, texture resources, user-definable structures and buffers

– See Microsoft documentation for more details and course tutorials for more examples

93

https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-data-types

What Can DXR HLSL Shaders Do?

• All the standard HLSL data types, texture resources, user-definable structures and buffers

– See Microsoft documentation for more details and course tutorials for more examples

• Numerous standard HLSL intrinsic or built-in functions useful for graphics, spatial manipulation, and 3D mathematics

– Basic math (sqrt, clamp, isinf, log), trigonometry (sin, acos, tanh), vectors (normalize, length), matrices (mul, transpose)

– See Microsoft documentation for full list and course tutorials for more examples

94

https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-data-types
https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-intrinsic-functions

What Can DXR HLSL Shaders Do?

• All the standard HLSL data types, texture resources, user-definable structures and buffers

– See Microsoft documentation for more details and course tutorials for more examples

• Numerous standard HLSL intrinsic or built-in functions useful for graphics, spatial manipulation, and 3D mathematics

– Basic math (sqrt, clamp, isinf, log), trigonometry (sin, acos, tanh), vectors (normalize, length), matrices (mul, transpose)

– See Microsoft documentation for full list and course tutorials for more examples

• New intrinsic functions for ray tracing

– Functions related to ray traversal: TraceRay(), ReportHit(), IgnoreHit(), and AcceptHitAndEndSearch()

– Functions for ray state, e.g.: WorldRayOrigin(), RayTCurrent(), InstanceID(), and HitKind()

95

https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-data-types
https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-intrinsic-functions

New Ray Tracing Built-in Functions

96

Ray Traversal Functions Ray Gen Intersect Any Hit Closest Miss Summary

TraceRay() ✓ ✓ ✓ Launch a new ray

ReportHit() ✓ Found a hit; test it; function returns true if hit accepted

IgnoreHit() ✓ Hit point should be ignored, traversal continues

AcceptHitAndEndSearch() ✓ Hit is good; stop search immediately, execute closest hit

New Ray Tracing Built-in Functions

97

Ray Launch Details Ray Gen Intersect Any Hit Closest Miss Summary

DispatchRaysDimensions() ✓ ✓ ✓ ✓ ✓ How many rays were launched (e.g., 1920 × 1080)

DispaychRaysIndex() ✓ ✓ ✓ ✓ ✓ Why ray (in that range) is the shader currently processing

Ray Traversal Functions Ray Gen Intersect Any Hit Closest Miss Summary

TraceRay() ✓ ✓ ✓ Launch a new ray

ReportHit() ✓ Found a hit; test it; function returns true if hit accepted

IgnoreHit() ✓ Hit point should be ignored, traversal continues

AcceptHitAndEndSearch() ✓ Hit is good; stop search immediately, execute closest hit

New Ray Tracing Built-in Functions

98

Ray Launch Details Ray Gen Intersect Any Hit Closest Miss Summary

DispatchRaysDimensions() ✓ ✓ ✓ ✓ ✓ How many rays were launched (e.g., 1920 × 1080)

DispaychRaysIndex() ✓ ✓ ✓ ✓ ✓ Why ray (in that range) is the shader currently processing

Ray Traversal Functions Ray Gen Intersect Any Hit Closest Miss Summary

TraceRay() ✓ ✓ ✓ Launch a new ray

ReportHit() ✓ Found a hit; test it; function returns true if hit accepted

IgnoreHit() ✓ Hit point should be ignored, traversal continues

AcceptHitAndEndSearch() ✓ Hit is good; stop search immediately, execute closest hit

Hit Specific Details Ray Gen Intersect Any Hit Closest Miss Summary

HitKind() ✓ ✓ Information about what kind of hit we’re processing

(Developer data specified by your intersection shader. For triangles can be:

HIT_KIND_TRIANGLE_FRONT_FACE or HIT_KIND_TRIANGLE_BACK_FACE)

New Ray Tracing Built-in Functions

99

Ray Introspection Ray Gen Intersect Any Hit Closest Miss Summary

RayTCurrent() ✓ ✓ ✓ ✓ Current distance along the ray

RayTMin() ✓ ✓ ✓ ✓ Min ray distance, as passed to this ray’s TraceRay()

RayFlags() ✓ ✓ ✓ ✓ The flags passed to this ray’s TraceRay()

WorldRayOrigin() ✓ ✓ ✓ ✓ The ray origin passed to this ray’s TraceRay()

WorldRayDirection() ✓ ✓ ✓ ✓ The ray direction passed to this ray’s TraceRay()

New Ray Tracing Built-in Functions

100

Current Object Introspection Ray Gen Intersect Any Hit Closest Miss Summary

InstanceIndex() ✓ ✓ ✓ Instance index in acceleration structure (generated)

InstanceID() ✓ ✓ ✓ Instance identifier in acceleration struct (user-provided)

PrimitiveIndex() ✓ ✓ ✓ Index of primitive in geometry instance (generated)

ObjectToWorld() ✓ ✓ ✓ Matrix to transform object-space to world-space

WorldToObject() ✓ ✓ ✓ Matrix to transform world-space to object-space

ObjectRayOrigin() ✓ ✓ ✓ Essentially: WorldToObject(WorldRayOrigin())

ObjectRayDirection() ✓ ✓ ✓ Essentially: WorldToObject(WorldRayDirection())

